Photo-Sketching:将你的照片转化为“速写”

描述

Photo-Sketching 一个能将照片的轮廓识别出来并将其转化为“速写”型图像的开源模块。

这个模块的使用也相对简单,下面给大家带上全方面的教程:

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,可以访问这篇文章:超详细Python安装指南 进行安装。

**(可选1) **如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

**(可选2) **此外,推荐大家用VSCode编辑器,它有许多的优点:Python 编程的最好搭档—VSCode 详细指南

这个项目推荐大家直接用Anaconda进行环境的构建和开发:Python数据分析与挖掘好帮手—Anaconda,因为作者提供了一个 environment.yml 文件,你只需要输入以下命令,就能一键安装环境和依赖:

conda env create -f environment.yml

2.下载预训练模型

作者已经训练好了一些识别模型方便大家使用,可以在下列地址找到:
https://drive.google.com/file/d/1TQf-LyS8rRDDapdcTnEgWzYJllPgiXdj/view

作者使用的是谷歌硬盘,如果你无法科学上网,可以使用我提供的完整源代码+预训练模型,在 **Python实用宝典 **公众号后台回复:**sketch **即可获取。

下载完成后解压文件,将 latest_net_D.pth 和 latest_net_G.pth 放置到 Checkpoints 文件夹下:

数据分析

3.运行预训练模型

接下来,我们需要修改使用预训练模型的启动脚本,这些脚本都放在 PhotoSketchscripts 下,我们需要使用的是 test_pretrained.cmd 或者 test_pretrained.sh 这两个脚本。

如果你是 windows 系统,请修改 test_pretrained.cmd 脚本,重点是dataDir、results_dir、checkpoints_dir:

数据分析

dataDir 指向到 PhotoSketch 所在的文件夹目录,如果你是跟我一样这么配的,results_dir 只需要配成 %dataDir%PhotoSketchResults 即可,checkpoints_dir 则为 %dataDir%PhotoSketchCheckpoints

如果你是macOS或者Linux,则修改 test_pretrained.sh 文件,修改方法与上面windows 的一样,只不过 反斜杠 "" 要换成 斜杆 "/" 。

修改完脚本后,打开命令行/终端,输入以下命令,就会将你 PhotoSketchexamples 目录下的文件转化为“速写”。

windows:

scriptstest_pretrained.cmd

Linux/MacOS:

./scripts/test_pretrained.sh

转化结果可以在 PhotoSketchResults 中看到,如下两图所示。

待转化目录:

数据分析

转化后:

数据分析

可以看到效果其实不是非常好,由于是作者预训练的模型,所以效果不好也正常,如果大家需要的话,可以自己针对性地拿一些图像训练模型,并针对性地做识别,这样做效果才是最好的。

你需要训练或测试自己的模型也非常简单:

  • 在仓库的 根目录中 ,运行 scripts/train.sh 可以训练模型
  • 在仓库的 根目录中 ,运行 scripts/test.sh 可以测试val集或测试集

当然训练过程肯定没这么简单,你会遇到不少问题,但是我相信大部分都是存放图片的目录结构上的问题,大家如果有兴趣可以动手试试。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分