两种增强PFC段性能的方法

模拟技术

2439人已加入

描述

对于较低功率的应用而言,临界导电模式(CrM)(也称作边界、边界线甚至是瞬态导电模式)通常是首选的控制技术。这种控制技术简单,市场上有采用这种技术的不同的商用控制器,容易设计。然而,高输入电压时,如果输入和输出电压之间的差距小,PFC段会变得不稳定。本文将说明解决这种问题的方法。PFC段一个更加常见的问题是通常发生在启动时的大电流过冲,而不论采用的是何种控制技术。

  临界导电模式工作

  临界导电模式(CrM)工作是低功率应用中最常见的解决方案。这种控制方法可以采用可变频率控制原理来描述特征,即电感电流先上升至所需线路电流的2倍,然后下降至零,接着再上升至正电流,期间没有死区时间(dead-time),如图1所示。这种控制方法需要电路精确地检测电感的磁芯复位。

  

PFC

 

  图1 临界导电模式工作

  零电流检测

  确定退磁完成的常见解决方案在于感测电感电压,更具体地说,就是检测电感电压何时降至零。监测线圈电压并非经济的解决方案。相反,这升压电感与小型绕组相关,这绕组(称作“零电压检测器”或ZCD绕组)提供了电感电压的一个缩小版本,能够用于控制器上,如图2所示。ZCD绕组采用耦合形式,因而它在MOSFET导电时间(反激配置)期间呈现出负电压,如图3中所示。这绕组提供:

  VAUX=-NVIN,当MOSFET导通时;

  VAUX=N(VOUT-VIN),当MOSFET开路时。

  其中,N是辅助绕组与主绕组之间的匝数比。

  

PFC

 

  图2 NCP1607驱动的应用段典型应用示意图

  当ZCD电压(VAUX)开始下降时线圈电流会达到零。许多CrM控制器内部比较VAUX与接近0V的ZCD参考电压,检测出下降沿,并准时启动下一个驱动信号。为了实现强固的工作,应用了磁滞机制,并实际上产生较高的(upper)阈值(VAUX上升时有效)及较低的(lower)阈值(VAUX下降时有效)。出于不同原因(如安森美半导体NCP1607 PFC控制器中的ZCD引脚的多功能性),在大多数商用器件中这些阈值都相对较高(在1V及2V之间)。

  例如,NCP1607数据表中可以发现下述的ZCD阈值规范(引脚5是监测ZCD信号的电路)。

  Vpin5上升:最低值为2.1V,典型值为2.3V,最大值为2.5V;

  Vpin5下降:最低值为1.5V,典型值为1.6V,最大值为1.8V。

  要恰当地检测零电流,VAUX信号必须高于较高的阈值。

  

PFC

 

  图3 波形

  极高输入线路时的不精确零电流检测

  图4及图5显示出在高线路时会面对的一个问题。VAUX电压在退磁相位期间较小,而这时Vin较高,因为VAUX与输出输入电压差成正比VAUX=N(VOUT-VIN)。此外,如图4所示,输入电压在开关频率呈现出交流含量。因此,VAUX波形并不平坦,相反,它还包含纹波。在低线路时,这纹波可以忽略不计。在高线路时,VAUX幅度在退磁相位期间较小。因此,这些振荡可能大到足以导致过早检测电感磁芯复位。事实上,如图4和图5所示的那样,零电流检测的精度降低了。

  

PFC

 

  图4 不精确零电流检测导致的不稳定性

  

PFC

 

  图5 连续导电模式工作

  图4显示出现不稳定性问题时高输入线路(正弦波顶端,此处Vin约为380V)下的VAUX电压。我们可以看到MOSFET关闭时,VAUX电压轻微跃升至高于ZCD阈值。由于其大纹波的缘故,在退磁相位期间,VAUX电压首先增加,然后下降。由于在某些开关周期的末段VAUX接近ZCD阈值,这VAUX电压下降导致零电压比较器在电感磁芯完全复位前就翻转(trip)。图5证实了这一论断。有时,升压二极管仍在导电时,PFC段开始新的周期。这个现象主要导致线路电流失真(见红色迹线)、功率因数退化,并可能有一些频率处在人耳可听到的噪声。

  改善高线路工作的简单调整方法

  如图6所示,在VCC与引脚5(ZCD引脚)之间布设一颗电阻,能够减轻或抑制这个现象。这样一来,ZCD引脚上就产生了偏置。

  

PFC

 

  图6 ZCD引脚上的调整

  在测试的应用中,VCC为15V,且Rzcd=68kΩ。在VCC与引脚5之间增加一颗电阻Roff=680kΩ,就改变了施加在引脚5(ZCD引脚)上的电压。退磁相位期间ZCD引脚上施加的实际VAUX电压就变为:

  

PFC

(1)

 

  然后,施加在引脚5上的电压就偏置。事实上,这就像是VAUX电压与减小了1.36V的ZCD阈值比较。这样一来,新的实际ZCD阈值就是:

  Vpin5上升:最低值为0.74V,典型值为0.94V,最大值为1.14V;

  Vpin5下降:最低值为0.14V,典型值为0.24V,最大值为0.44V。

  这些降低的ZCD阈值增加了ZCD的精度,并能抑制CCM工作,在相同条件下获得的波特图(见图7)就证实了这一点。

  

PFC

 

  图7 调整改善器件工作

  必须注意,Vpin5下降(我们的案例中是1.5V)时,偏置必须保持在低于ZCD最低阈值。这是为了确保新的实际ZCD阈值(Vpin5下降时) 保持高于0V。否则,系统可能难于检测磁芯复位并因此启动新的开关序列。出于这个目的,应当考虑到VCC的变化。

  启动时的大过冲

  PFC段从输入线路正弦波电压源吸收正弦电流,因此,它们为负载提供仅匹配平均需求的方波正弦功率。输出电容(大电容)“吸收”实际提供的功率与负载消耗的功率之差值。

  ● 馈送给负载的功率低于需求时,输出电容放电,补偿功率差额。

  ● 提供的功率超过负载功耗时,输出电容充电,存储多余的能量。

  因此,输出电压呈现出输入线路频率2倍的低频交流含量。不利的是,PFC电流整形(current-shaping)方法均基于控制信号无纹波的假设。否则,就不能够优化功率因数,因为输入线路电流重新复制了控制信号失真。这就是众所周知的PFC电路动态性能差的原因。它们的稳压环路带宽设得极低,从而抑制100Hz或120Hz纹波,否则输出电压就会注入这纹波。

  由于系统极慢,PFC段遭受陡峭的负载或输入电压变化时,会在大电容上呈现出大的过冲(over-shoot)或欠冲(under-shoot)。启动序列就是这些瞬态中的一种,能够产生大的电压过应力(over-stress)。

  

PFC

 

  图8 输出电压纹波

  图9展示能在启动相位期间观察到的那类过冲。这波特图是使用由NCP1607驱动、负载是下行转换器的PFC段获得的。

  

PFC

 

  图9 启动相位期间的过冲

  承受启动过冲

  应用软启动是减小过冲的一种自然选择。然而,设计人员所选择的控制器并不必须具有这个功能特性。此外,从定义来看,这种功能减缓了启动速度,而这并非总是可以接受。

  另外一种简单的选择涉及在反馈感测电阻分压器处增加一个电容,如图10所示。在这个图中,我们假定感测网络中上部的电阻分割为两个电阻,而电容Cfb并联连接在其中一个电阻的两端。

  

PFC

 

  10 小幅调整反馈网络

  如果控制电路中嵌入了传统的误差放大器,让我们分析电容Cfb的影响。在稳态,Cfb改变了传递函数。通过检测,我们立即注意到它增加了:

  处于下述频率的一个零点:

  

PFC

(2)

 

  处于下述频率的一个极点:

  

PFC

(3)

 

  控制器集成了传导误差放大器(OTA)时,情况就有点不同。这是因为反馈引脚(误差放大器的反相输入)不再是虚接地(virtual ground)。因此,电阻分压器中下部位置的电阻(RfbL)影响了极点频率的表达式。实际上,采用OTA时:

  

PFC

(4)

 

  然而,PFC输出电压的稳压电平通常处于390V范围,而控制器参考电压处在少数几伏的范围。因此,与(RfbU1+RfbU2)相比,RfbL极小;如果RfbU1与RfbU2处在相同范围,或如果RfbU1小于RfbU2,我们就可以考虑:RfbL=RfbU2。事实上,设计人员基于这些考虑因素,能够得出近似Cfb产生的极点频率,即:

  

PFC

(5)

 

  最后,两种配置中都获得相同的极点。

  这些条件(RfbU1≈RfbU2)或(RfbU1≤RfbU2)并非限制性条件。相反,满足这些条件是明智之举,因为RfbU1两端的电压及相应的Cfb两端的电压取决于RfbU1值与(RfbU1+RfbU2+RfbL)总电阻值的相对比较关系。这就是为什么它们是现实可行的原因。

  如果RfbU1与RfbU2这两个电阻拥有类似阻值,

  

PFC

(6)

 

  如果RfbL=RfbU2:

  

PFC

(7)

 

  最后,如果与RfbU2相比RfbU1极小,我们就获得在控制至输出传递函数中抵消(cancel)的极点和零点。这样,增加Cfb就对环路和交越频率没有影响。如果RfbU1与RfbU2处在相同范围,低频增益就略微增加,交越频率就以跟fp与fz的相同比率增加。事实上,特别是在RfbL=RfbU2时,这个增加的电容并不会大幅改变PFC段的动态性能。

  然而,在启动相位期间,这个电容发挥重要作用。当输出电压上升时,Cfb电容也充电。Cfb充电电流增加到反馈电流中,所以稳压电平临时降低。这增加的电流与Cfb电容值成正比,并取决于输出电压的陡峭度,因此,在输出电压快速充电时,这个影响更引人注目。

  实际验证

  在应用中已经测试了调整方法,反馈网络如下所示:

  RfbU1≈RfbU2=470kΩ

  RfbL=6.2kΩ

  电阻RfbU1两端放置了一个100nF电容。它必须是一种高压电容,因为若我们假定输出电压最大值为450V,它两端的电压可能达到223V。作为一项经验法则(rule of the thumb),我们选择了100nF电容值,这样,在观测到过冲时,时间常数(RfbU1Cfb)就处在启动时间的范围之内。

  图11比较没有时的启动序列(左图)与有Cfb时的启动相位(右图)。这些波特图清楚显示电容的影响。Cfb充电电流人为地增加了输出电压(即图中的Vbulk)充电期间的反馈电流,导致预期的控制信号(Vcontrol)放电。因此就没有观测到输出电压过冲。我们可进一步指明,启动时间未受明显影响。

  

PFC

 

  图11 有Cfb(左图)及没有Cfb(右图)时的启动特性

  图12显示了没有Cfb时(左图)及有Cfb时(右图)PFC段对突兀的负载改变(120W阶跃)的响应。我们的案例中(RfbU1=RfbU2),Cfb产生并不会相互抵消的额外极点及额外零点,且轻微改变环路特性。然而,最重要的是,采用Cfb还是改善了响应,因为较大的输出偏差(Output deviation)使这些负载阶跃类似于启动瞬态。因此,Cfb在这里同样帮助控制电路出现预料中的所期望的电平恢复。

  

PFC

 

  12 没有Cfb时(左图)及有Cfb时(右图)PFC段对负载阶跃变化的响应

  结论

  本文讨论了如何解决PFC段经常会面对的两个问题。首先,在CrM应用中,零电流检测在高输入线路时精度不高,而当输入线路电压非常接近输出电压时,可能会出现某些不需要的连续导电模式周期,导致一些功率因数退化,及可能出现一些人耳可听到的噪声。能够使用一颗简单的电阻来改善这功能。其次,在启动序列期间,PFC段也可能呈现出过大的过冲。可以在反馈感测网络中放置一颗电容来限制或抑制这过应力。即便是在电源设计的极晚阶段,这两种调整方法都易于实施。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 相关推荐
  • PFC

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分