今天我将带大家设计一个简单的orm框架,并简单剖析一下YAML这个序列化工具的原理。
说到metaclass,我们首先必须清楚一个最基础的概念就是对象是类的实例,而类是type的实例,重复一遍:
在面向对象的编程模型中,类就相当于一个房子的设计图纸,而对象则是根据这个设计图纸建出来的房子。
下图中,玩具模型就可以代表一个类,而具体生产出来的玩具就可以代表一个对象:
总之,类就是创建对象的模板。
而type又是创建类的模板,那么我们就可以通过type创建自己想要的类。
比如定义一个 Hello 的 class:
class Hello(object):
def hello(self, name='world'):
print('Hello, %s.' % name)
当 Python 解释器载入 hello 模块时,就会依次执行该模块的所有语句,执行结果就是动态创建出一个 Hello 的 class对象。
type()函数既可以查看一个类型或变量的类型,也可以根据参数创建出新的类型,比如上面那段类的定义本质上就是:
def hello(self, name='world'):
print('Hello, %s.' % name)
Hello = type('Hello', (object,), dict(hello=hello))
type()函数创建class 对象,依次传入 3 个参数:
通过 type() 函数创建的类和直接写 class 是完全一样的,因为 Python 解释器遇到 class 定义时,仅仅是扫描一下class 定义的语法,然后调用 type() 函数创建出 class。
正常情况下,我们肯定都是用 class Xxx... 来定义类,但是type() 函数允许我们动态创建出类来,这意味着Python这门动态语言支持运行期动态创建类。你可能感受不到这有多强大,要知道想在静态语言运行期创建类,必须构造源代码字符串再调用编译器,或者借助一些工具生成字节码实现,本质上都是动态编译,会非常复杂。
那type和metaclass有什么关系呢?metaclass到底是什么呢?
我认为metaclass 其实就是type或type的子类,通过继承type,重载__call__
运算符,便可以在class类对象创建时作出一些修改。
对于类 MyClass:
class MyClass():
pass
其实相当于:
class MyClass(metaclass = type):
pass
一旦我们把它的 metaclass 设置成 MyMeta:
class MyClass(metaclass = MyMeta):
pass
MyClass 就不再由原生的 type 创建,而是会调用 MyMeta 的__call__
运算符重载。
class = type(classname, superclasses, attributedict)
## 变为了
class = MyMeta(classname, superclasses, attributedict)
对于具有继承关系的类:
class Foo(Bar):
pass
Python做了如下的操作:
假想一个很傻的例子,你决定在你的模块里所有的类的属性都应该是大写形式。有好几种方法可以办到,但其中一种就是通过在模块级别设定__metaclass__:
class UpperAttrMetaClass(type):
## __new__ 是在__init__之前被调用的特殊方法
## __new__是用来创建对象并返回之的方法
## 而__init__只是用来将传入的参数初始化给对象
## 你很少用到__new__,除非你希望能够控制对象的创建
## 这里,创建的对象是类,我们希望能够自定义它,所以我们这里改写__new__
## 如果你希望的话,你也可以在__init__中做些事情
## 还有一些高级的用法会涉及到改写__call__特殊方法,但是我们这里不用
def __new__(cls, future_class_name, future_class_parents, future_class_attr):
##遍历属性字典,把不是__开头的属性名字变为大写
newAttr = {}
for name,value in future_class_attr.items():
if not name.startswith("__"):
newAttr[name.upper()] = value
## 方法1:通过'type'来做类对象的创建
## return type(future_class_name, future_class_parents, newAttr)
## 方法2:复用type.__new__方法,这就是基本的OOP编程
## return type.__new__(cls, future_class_name, future_class_parents, newAttr)
## 方法3:使用super方法
return super(UpperAttrMetaClass, cls).__new__(cls, future_class_name, future_class_parents, newAttr)
class Foo(object, metaclass = UpperAttrMetaClass):
bar = 'bip'
print(hasattr(Foo, 'bar'))
## 输出: False
print(hasattr(Foo, 'BAR'))
## 输出:True
f = Foo()
print(f.BAR)
## 输出:'bip'
ORM全称“Object Relational Mapping”,即对象-关系映射,就是把关系数据库的一行映射为一个对象,也就是一个类对应一个表,这样,写代码更简单,不用直接操作SQL语句。
现在设计一下ORM框架的调用接口,比如用户想通过User
类来操作对应的数据库表User
,我们期待他写出这样的代码:
class User(Model):
## 定义类的属性到列的映射:
id = IntegerField('id')
name = StringField('username')
email = StringField('email')
password = StringField('password')
## 创建一个实例:
u = User(id=12345, name='xiaoxiaoming', email='test@orm.org', password='my-pwd')
## 保存到数据库:
u.save()
上面的接口通过常规方法很难或几乎很难实现,但通过metaclass就会相对比较简单。核心思想就是通过metaclass修改类的定义,将类的所有Field类型的属性,用一个额外的字典去保存,然后从原定义中删除。对于User创建对象时传入的参数(id=12345, name='xiaoxiaoming'等)可以模仿字典的实现或直接继承dict类保存起来。
其中,父类Model
和属性类型StringField
、IntegerField
是由ORM框架提供的,剩下的魔术方法比如save()
全部由metaclass自动完成。虽然metaclass的编写会比较复杂,但ORM的使用者用起来却异常简单。
首先定义Field类,它负责保存数据库表的字段名和字段类型:
class Field(object):
def __init__(self, name, column_type):
self.name = name
self.column_type = column_type
def __str__(self):
return '< %s:%s >' % (self.__class__.__name__, self.name)
在Field的基础上,进一步定义各种类型的Field,比如StringField,IntegerField等等:
class StringField(Field):
def __init__(self, name):
super(StringField, self).__init__(name, 'varchar(100)')
class IntegerField(Field):
def __init__(self, name):
super(IntegerField, self).__init__(name, 'bigint')
下一步,编写ModelMetaclass:
class ModelMetaclass(type):
def __new__(cls, name, bases, attrs):
if name == 'Model':
return type.__new__(cls, name, bases, attrs)
print('Found model: %s' % name)
mappings = dict()
for k, v in attrs.items():
if isinstance(v, Field):
print('Found mapping: %s == > %s' % (k, v))
mappings[k] = v
for k in mappings.keys():
attrs.pop(k)
attrs['__mappings__'] = mappings ## 保存属性和列的映射关系
attrs.setdefault('__table__', name) ## 当未定义__table__属性时,表名直接使用类名
return type.__new__(cls, name, bases, attrs)
以及基类Model:
class Model(dict, metaclass=ModelMetaclass):
def __init__(self, **kw):
super(Model, self).__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Model' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
def save(self):
fields = []
params = []
args = []
for k, v in self.__mappings__.items():
fields.append(v.name)
params.append('?')
args.append(getattr(self, k, None))
sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))
print('SQL: %s' % sql)
print('ARGS: %s' % str(args))
在ModelMetaclass
中,一共做了几件事情:
User
)中查找定义的类的所有属性,如果找到一个Field属性,就把它保存到一个__mappings__
的dict中,同时从类属性中删除该Field属性(避免实例的属性遮盖类的同名属性);__table__
字段时,直接将类名保存到__table__
字段中作为表名。在Model
类中,就可以定义各种操作数据库的方法,比如save()
,delete()
,find()
,update
等等。
我们实现了save()
方法,把一个实例保存到数据库中。因为有表名,属性到字段的映射和属性值的集合,就可以构造出INSERT
语句。
测试:
u = User(id=12345, name='xiaoxiaoming', email='test@orm.org', password='my-pwd')
u.save()
输出如下:
Found model: User
Found mapping: id == > < IntegerField:id >
Found mapping: name == > < StringField:username >
Found mapping: email == > < StringField:email >
Found mapping: password == > < StringField:password >
SQL: insert into User (id,username,email,password) values (?,?,?,?)
ARGS: [12345, 'xiaoxiaoming', 'test@orm.org', 'my-pwd']
测试2:
class Blog(Model):
__table__ = 'blogs'
id = IntegerField('id')
user_id = StringField('user_id')
user_name = StringField('user_name')
name = StringField('user_name')
summary = StringField('summary')
content = StringField('content')
b = Blog(id=12345, user_id='user_id1', user_name='xxm', name='orm框架的基本运行机制', summary="简单讲述一下orm框架的基本运行机制",
content="此处省略一万字...")
b.save()
输出:
Found model: Blog
Found mapping: id == > < IntegerField:id >
Found mapping: user_id == > < StringField:user_id >
Found mapping: user_name == > < StringField:user_name >
Found mapping: name == > < StringField:user_name >
Found mapping: summary == > < StringField:summary >
Found mapping: content == > < StringField:content >
SQL: insert into blogs (id,user_id,user_name,user_name,summary,content) values (?,?,?,?,?,?)
ARGS: [12345, 'user_id1', 'xxm', 'orm框架的基本运行机制', '简单讲述一下orm框架的基本运行机制', '此处省略一万字...']
可以看到,save()
方法已经打印出了可执行的SQL语句,以及参数列表,只需要真正连接到数据库,执行该SQL语句,就可以完成真正的功能。
YAML是一个家喻户晓的 Python 工具,可以方便地序列化 / 逆序列化结构数据。
官方文档:https://pyyaml.org/wiki/PyYAMLDocumentation
安装:
pip install pyyaml
YAMLObject 的任意子类支持序列化和反序列化(serialization & deserialization)。比如说下面这段代码:
import yaml
class Monster(yaml.YAMLObject):
yaml_tag = '!Monster'
def __init__(self, name, hp, ac, attacks):
self.name = name
self.hp = hp
self.ac = ac
self.attacks = attacks
def __repr__(self):
return f"{self.__class__.__name__}(name={self.name}, hp={self.hp}, ac={self.ac}, attacks={self.attacks})"
monster1 = yaml.load("""
--- !Monster
name: Cave spider
hp: [2,6]
ac: 16
attacks: [BITE, HURT]
""")
print(monster1, type(monster1))
monster2 = Monster(name='Cave lizard', hp=[3, 6], ac=16, attacks=['BITE', 'HURT'])
print(yaml.dump(monster2))
运行结果:
Monster(name=Cave spider, hp=[2, 6], ac=16, attacks=['BITE', 'HURT']) < class '__main__.Monster' >
!Monster
ac: 16
attacks: [BITE, HURT]
hp: [3, 6]
name: Cave lizard
这里面调用统一的 yaml.load(),就能把任意一个 yaml 序列载入成一个 Python Object;而调用统一的 yaml.dump(),就能把一个 YAMLObject 子类序列化。
对于 load() 和 dump() 的使用者来说,他们完全不需要提前知道任何类型信息,这让超动态配置编程成了可能。比方说,在一个智能语音助手的大型项目中,我们有 1 万个语音对话场景,每一个场景都是不同团队开发的。作为智能语音助手的核心团队成员,我不可能去了解每个子场景的实现细节。
在动态配置实验不同场景时,经常是今天我要实验场景 A 和 B 的配置,明天实验 B 和 C 的配置,光配置文件就有几万行量级,工作量不可谓不小。而应用这样的动态配置理念,就可以让引擎根据配置文件,动态加载所需要的 Python 类。
对于 YAML 的使用者也很方便,只要简单地继承 yaml.YAMLObject,就能让你的 Python Object 具有序列化和逆序列化能力。
据说即使是在大厂 Google 的 Python 开发者,发现能深入解释 YAML 这种设计模式优点的人,大概只有 10%。而能知道类似 YAML 的这种动态序列化 / 逆序列化功能正是用 metaclass 实现的人,可能只有 1% 了。而能够将YAML 怎样用 metaclass 实现动态序列化 / 逆序列化功能讲出一二的可能只有 0.1%了。
对于YAMLObject 的 load和dump() 功能,简单来说,我们需要一个全局的注册器,让 YAML 知道,序列化文本中的!Monster
需要载入成 Monster 这个 Python 类型,Monster 这个 Python 类型需要被序列化为!Monster
标签开头的字符串。
一个很自然的想法就是,那我们建立一个全局变量叫 registry,把所有需要逆序列化的 YAMLObject,都注册进去。比如下面这样:
registry = {}
def add_constructor(target_class):
registry[target_class.yaml_tag] = target_class
然后,在 Monster 类定义后面加上下面这行代码:
add_constructor(Monster)
这样的缺点很明显,对于 YAML 的使用者来说,每一个 YAML 的可逆序列化的类 Foo 定义后,都需要加上一句话add_constructor(Foo)
。这无疑给开发者增加了麻烦,也更容易出错,毕竟开发者很容易忘了这一点。
更优雅的实现方式自然是通过metaclass 解决了这个问题,YAML 的源码正是这样实现的:
class YAMLObjectMetaclass(type):
def __init__(cls, name, bases, kwds):
super(YAMLObjectMetaclass, cls).__init__(name, bases, kwds)
if 'yaml_tag' in kwds and kwds['yaml_tag'] is not None:
cls.yaml_loader.add_constructor(cls.yaml_tag, cls.from_yaml)
cls.yaml_dumper.add_representer(cls, cls.to_yaml)
## 省略其余定义
class YAMLObject(metaclass=YAMLObjectMetaclass):
yaml_loader = Loader
yaml_dumper = Dumper
## 省略其余定义
可以看到,YAMLObject 把 metaclass 声明成了 YAMLObjectMetaclass,YAMLObjectMetaclass则会改变YAMLObject类和其子类的定义,就是下面这行代码将YAMLObject 的子类加入到了yaml的两个全局注册表中:
cls.yaml_loader.add_constructor(cls.yaml_tag, cls.from_yaml)
cls.yaml_dumper.add_representer(cls, cls.to_yaml)
YAML 应用 metaclass,拦截了所有 YAMLObject 子类的定义。也就是说,在你定义任何 YAMLObject 子类时,Python 会强行插入运行上面这段代码,把我们之前想要的add_constructor(Foo)
和add_representer(Foo)
给自动加上。所以 YAML 的使用者,无需自己去手写add_constructor(Foo)
和add_representer(Foo)
。
这次分享主要是简单的浅析了 metaclass 的实现机制。通过实现一个orm框架并解读 YAML 的源码,相信你已经对metaclass 有了不错的理解。
metaclass 是 Python 黑魔法级别的语言特性,它可以改变类创建时的行为,这种强大的功能使用起来务必小心。
看完本文,你觉得装饰器和 metaclass 有什么区别呢?欢迎下方留言和我讨论。记得一键三连呦,笔芯!
全部0条评论
快来发表一下你的评论吧 !