Python 可视化如何配色

描述

我们在利用Python进行数据可视化时,有着大量的高质量库可以用,比如: MatplotlibseabornPlotlyBokehggplot等等。但图表好不好看,配色占一半。如果没有良好的审美观,很容易做出来的东西辣眼睛……

所以想做好数据可视化,就要有合适的配色方案。除了可以借鉴参考配色网站的案例,也可以自己自定义一套配色方案。
如何去自定义呢?

我倒是有一个想法,配色的美感需要培养,但在一开始可以在优秀的作品上寻找灵感,比如经典电影、海报、风景图、Logo等等,这些都是绝佳的参考。

那么,我们用Python能不能做到呢?

答案当然是可以,毕竟Python除了不能生孩子,什么都能做!

提取图片中的配色

在Python中对图片进行操作,最常用的两个模块就是PIL和opencv了。所以一开始我的方案是,用Python库打开图片,然后遍历像素颜色,最后按照色彩比例进行排序,即可得到该图片的配色方案。

结果做到一半,我发现自己忽略了一件事。大家都知道,Python 是一门优雅的语言,简洁的语法,强大的功能。同时它还有拥有极其丰富的第三方库,这些库几乎都可以在github 或者 pypi上找到源码。

于是我搜了一下,确实有相关的库可以提取图片中的配色,那我们就不用重复造轮子了。

这个模块就是—— Haishoku ,可以用于从图像中获取主色调和主要配色方案。

具体用法,还是先安装

pip install haishoku

将前文提到的海上夕阳图,保存到本地并命名为test.png

from haishoku.haishoku import Haishoku
image = 'test.png'
haishoku = Haishoku.loadHaishoku(image)

导入模块,运行代码会返回一个Haishoku实例,你可以通过实例属性haishoku.dominanthaishoku.palette,从而直接获取到对应的主色调和配色方案。

主色调

首先,要怎么获取图片的主色调呢?

print(haishoku.dominant)

这返回了一个结构为 (R, G, B) 的元组,就是该图片的主色调。

python

运行下面这行代码

Haishoku.showDominant(image)

则会打开一个临时文件,用来预览主色调的颜色。

python
主色调(最多的颜色)

配色方案

#获取配色方案
pprint.pprint(haishoku.palette)

返回一个结构为:[(R, G, B), (R, G, B), …] 最大长度为8的数组。

python

这里使用了pprint模块,对于这种多层嵌套的元组,正好可以美观地打印出来。

运行下面这行代码

Haishoku.showPalette(image)

则会打开一个临时文件,用来预览图片配色方案。(不会保存在本地)

就这样,只需几行代码就提取到图片中的配色方案,是不是很简单。

另外,Haishoku库从v1.1.4版本后,支持从 url 中直接加载图像。

imagepath = 'https://img-blog.csdnimg.cn/20190222215216318.png'
    
haishoku = Haishoku.loadHaishoku(imagepath)

配色方案与可视化

通过前面的操作,我们就提取到了合适的配色,那么就实战一下吧。

经典电影、海报、风景图、Logo都是绝佳的参考对象。

所以这次,我选择了Google的Logo,并提取到它的配色方案。

imagepath = 'google.png'

haishoku = Haishoku.loadHaishoku(imagepath)

pprint.pprint(haishoku.palette)

Haishoku.showPalette(imagepath)

python

那么,这套配色方案应用到了数据可视化中,会是怎么样呢??

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分