如何实现Pandas的DataFrame转换交互式表格

描述

Pandas是我们日常处理表格数据最常用的包,但是对于数据分析来说,Pandas的DataFrame还不够直观,所以今天我们将介绍4个和Pandas相关的Python包,可以将Pandas的DataFrame转换交+互式表格,让我们可以直接在上面进行数据分析的操作。

Pivottablejs

Pivottablejs是一个通过IPython widgets集成到Python中的JavaScript库,允许用户直接从DataFrame数据创建交互式和灵活的汇总报表。可以进行高效、清晰的数据分析和表示,帮助将数据从Pandas DataFrame转换为易于观察的交互式数据透视表。

pivot_ui函数可以自动从DataFrame生成交互式用户界面,使用户可以简单地修改,检查聚合项,并快速轻松地更改数据结构。

 !pip install pivottablejs
 
 from pivottablejs import pivot_ui
 import pandas as pd
 
 data = pd.read_csv("D:Datacompany_unicorn.csv")
 data["Year"] = pd.to_datetime(data["Date Joined"]).dt.year
 pivot_ui(data)

如下图所示,我们可以直接在notebook中对DataFrame进行筛选,生成图表

python

我们还可以快速生成数据透视表

python

Pygwalker

PyGWalker可以把DataFrame变成一个表格风格的用户界面,让我们直观有效地探索数据。

python

这个包的用户界面对Tableau用户来说很熟悉,如果你用过Tableau那么上手起来就很容易

 !pip install pygwalker
 
 import pygwalker as pyw
 walker = pyw.walk(data)

python

img

通过一些简单的拖拽,可以进行筛选和可视化,这是非常方便的。

Qgrid

python

除了PyGWalker之外,Qgrid也是一个很好的工具,它可以很容易地将DataFrame架转换为视觉上直观的交互式数据表。

 import qgrid
 qgridframe = qgrid.show_grid(data, show_toolbar=True)
 qgridframe

python

 

 

我们还可以直接在表上添加、删除数据。

与上面提到的qgrid包一样,Itables提供了一个简单的接口。可以进行简单的操作,如过滤、搜索、排序等。

 from itables import init_notebook_mode, show
 init_notebook_mode(all_interactive=False)
 
 show(data)

python

 

 

tables和Qgrid包对于快速查看数据模式是必要的。然而,如果我们想要进一步理解数据并进行数据转换,它们的特征是不够的。因此,在获得更复杂的见解的情况下,使用透视表js和Pygwalker是可取的。

总结

上面的这些包可以在Jupyter Notebook中将dataframe转换为交互式表。

Itables 和Qgrid比较轻量,可以让我们快速的查看数据,但是如果你想进行更多的操作,例如生成一些简单的可视化图表,那么Pivottablejs和Pygwalker是一个很好的工具。

审核编辑:黄飞

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分