点击蓝字 关注我们
作者:Fatih Cetindag,安森美汽车电源部应用工程师
碳化硅 (SiC) 具有比硅 (Si) 更高的介电击穿场强、能带隙和热导率,电力电子设计人员可以利用这些特性来开发比硅基IGBT器件效率更高、功率密度更大的电源转换器。针对这些应用,为了最大限度地减少高频下的导通和开关损耗,需要使用低RDS(on)和低Qrr(体二极管反向恢复电荷)的器件。
本文将介绍三相功率因数校正 (PFC) 转换器的器件特性测试和仿真结果,转换器使用两款TO247-4L封装的不同SiC MOSFET(金属氧化物半导体场效应晶体管) 实现。被测器件之一来自安森美 (onsemi) 新推出的EliteSiC M3S系列,其针对低开关损耗进行了优化,另一款被测器件来自竞争对手,其基本参数如表1所示。本文还讨论了器件参数如何影响相对性能。
开关器件中的功率损耗可分为导通损耗和开关损耗。由于电流或电压不可能瞬时改变电平,因此存在上升和下降时间,开关损耗也就随之产生。对于功率 MOSFET 的电压和电流,上升和下降时间取决于器件寄生电容的充放电速度。此外,体二极管的反向恢复电荷也会造成开关损耗。另一方面,当器件“开启”传导电流时,器件会有导通损耗。器件的动态参数决定开关损耗,而导通损耗则与静态参数有关。通过研究这些参数,设计人员可以深入了解器件性能与功率损耗大小的关系。影响开关损耗的主要参数是器件电容(Coss、Ciss和Crss)和体二极管反向恢复电荷 (Qrr)。相比之下,造成导通损耗的主要因素是RDS(on)和VSD(体二极管压降)。
首先,在不同条件下使用双脉冲测试装置进行动态特性测试,以比较每个MOSFET的关键参数,如图1所示。然后进行三相PFC仿真,以比较每个MOSFET的整体系统效率。
图 1:双脉冲测试电路简化示意图
表1:两款被测器件的资料手册信息
RDS(on)和VSD(体二极管压降)是最重要的静态参数,我们在多种测试条件下进行了测试。安森美NVH4L022N120M3S与竞争对手A的备选SiC MOSFET进行了对比测试。表2中总结的结果表明,在所有测量的温度和电流下,安森美NVH4L022N120M3S性能更优越,其VSD均更低。根据这些结果可知,其导通损耗更低。
表2:不同测试条件下VSD的比较
RDS(on) 是另一个可用于预测器件导通损耗的关键参数。因此,在25°C和175°C结温下对两个器件的RDS(on)参数进行了测定。RDS(on)的测量在15V和18V两种栅源电压下进行,使用300μs的导通脉冲宽度。测试结果表明,竞争产品A在每种测试条件下的RDS(on)都略低,这说明在给定结温下,其导通损耗低于M3S。
图2:两个MOSFET在25°C(左)和175°C(右)下的RDS(on)比较
SiC MOSFET中不存在少数载流子,因此尾电流不会像在Si IGBT中那样影响性能,结果是关断损耗显著降低。此外,SiC器件具有比Si MOSFET更低的反向恢复电荷,因此峰值导通电流更小,导通损耗更低。输入电容(Ciss)、输出电容 (Coss)、反向传输电容 (Crss) 和反向恢复电荷 (Qrr) 是造成开关损耗的主要参数,值越小通常损耗越低。在开关应用中,开关瞬态间隔期间的漏源电压显著高于 6V,因此高电压区域是这些开关曲线的关键部分。当VDS≥6V时,NVH4L022N120M3S的Ciss、Coss和Crss值更低(图3),这意味着其导通损耗和关断损耗低于竞争产品A。
图3:输入Ciss、输出Coss和反向传输Crss电容的比较
在25°C和175°C时,通过双脉冲测试在多种负载电流条件下测量了两款器件的开关损耗,如图4和图5所示。测试条件如下:
Vin=800V
RG=4.7Ω
VGS_on=+18V
VGS_off=−3V
ID=5−100A
平均而言,与竞争产品A相比,对于10A至100A的负载电流,M3S的开关损耗在25°C时要低5%,在175°C时要低9%。主要原因是得益于安森美的M3S工艺技术,其EON损耗更低。
图4.25°C 时的开关损耗比较
图5.175°C时的开关损耗
如前所述,MOSFET的反向恢复行为也会影响开关损耗。该参数的测试条件为:ID=40A,di/dt=3A/ns(调整RG值以获得相同di/dt),温度为25°C。测试结果表明,M3S的反向恢复时间更短,反向恢复电荷更低,反向恢复能量更低,因此其反向恢复性能优于竞争产品A。
图6:M3S(左)和竞争产品 A(右)的反向恢复损耗比较
升压型PFC和具有两个电感 (LL)、一个电容 (C) 的LLC,是汽车车载充电器和高压DC/DC转换器中常用的电路拓扑。升压型三相PFC拓扑包括六个开关器件,而全桥LLC拓扑有四个开关器件,次级侧还有同步整流器。
图7:升压型三相PFC(左)和全桥LLC(右)
评估完导通损耗和开关损耗之后,接下来对三相升压型PFC电路进行仿真(利用PSIM),使用以下测试条件分别比较采用每种类型MOSFET的系统效率:
VaLL=VbLL=VcLL=400V
fline=50Hz
RG=4.7Ω
VOUT=800V
fSW=100kHz
POUT=11kW(最大值)
仿真结果表明,对于相同的系统设计,采用NVH4L022N120M3S的三相升压PFC系统在所有工作点上都表现出比竞争产品A更高的效率。
图8:仿真估算:不同功率水平下的效率比较
在电力电子应用中,SiC 器件相比传统硅基器件具有多项优势,包括更高的效率、更低的开关损耗和导通损耗,以及能够在更高频率下工作,从而支持更高功率密度的设计。与类似的竞争器件相比,安森美的 M3S 技术提供更胜一筹的开关性能和品质因数,包括ETOT、Qrr、VSD和整体系统效率。M3S技术专为满足电动汽车高频开关应用(如车载充电器和高压DC/DC转换器)的要求而打造。M3S MOSFET旨在实现导通损耗和开关损耗之间的平衡,从而适用于PFC和其他硬开关应用。
点个星标,茫茫人海也能一眼看到我
原文标题:为什么EliteSiC M3S技术是高速开关应用的更优选择?
文章出处:【微信公众号:安森美】欢迎添加关注!文章转载请注明出处。
全部0条评论
快来发表一下你的评论吧 !