3-Stage Nested Miller Compensation电路参数调节

电子说

1.3w人已加入

描述

3-Stage Nested Miller Compensation 的经典结论推到来自于Huijsing 的 "Frequency Compensation Techniques For Low-Power Operational Amplifiers"

反馈系统

书中利用三阶巴特沃兹函数系数 (1,2,2,1)求解系统函数的系数,推导出相位裕度60°时

反馈系统

反馈系统

这个结果很简洁,但推到过程缺乏直观性,不利于调节电路时参数的选择。(也有书建议比例是 1/3, 1/9)

为了方便直观理解和电路参数调节,可以分别考虑两个反馈环路。

1.只考虑内环,gm2, gm2,Cm2

反馈系统

这是简单的两级Miller补偿,高频极点在 p'=gm1/Cl, 单位增益带宽gm2/Cm1=1/2*p'时有大约60°相位裕度。

2.考虑外环

反馈系统

反馈系统

电路可以近似等效为上两图(当Cm1>>Cp),“Design of Three-Stage Class-AB 16 ohm Driver Capable of Handling Wide Range
of Load Capacitance" Appendix A 有理论推导,过程比较简单,这里不做赘述。

gm2,gm1,Cm1的单位反馈闭环的3dB带宽等于开环的单位增益带宽gm2/Cm1. 也就是说整个系统有个高频极点在gm2/Cm1. 主极点在gm3的输出端(miller effect), 单位增益带宽在 gm3/Cm2. 当 gm3/Cm2=1/2*gm2/Cm1=1/4*gm1/Cl时,可以获得60°相位裕度。

这样的直观解法可获得和Hujsing相同的结果,对实际的电路参数调节更有帮助。

NMC对极点的变化图:

反馈系统y

NMC的缺点是带宽受限,尤其是当负载电容偏大,p1'=gm1/CL较小时。系统带宽只有其1/4.

DFCFC结构通过在第二级引入零点拓宽了后两级的单位增益带宽,提高了系统的带宽,依然使用上述方法分析。参考论文 “Three-Stage Large Capacitive Load Amplifier with
Damping-Factor-Control Frequency Compensation” JSSC Feb 2000. 为了和论文结论方便比对,交换了gm1, gm3的命名。

反馈系统

gm4, Cm2,R4 构成了damping circuit. 可等效为电阻和电容串联,这里不做具体推导(求反馈系统的输入电阻)。

反馈系统

1/gm4 和gm4R4Cm1形成了一个零点,补偿了rds2,gm4R4Cm1形成的低频极点的相移,在系统单位增益带宽处表现为电阻1/gm4,高频极点 gm4/Cp . 在此频率下进一步简化电路

反馈系统

在单位增益带宽处,gm3,gm2这两级的增益为gm2gm3/(gm4sCL). 所以这两级的单位增益带宽等于 gm2gm3/(gm4CL) . 为了保证gm2,gm3闭环的60° phase margin,高频极点 gm4/Cp要等于两倍的单位增益带宽 2gm2gm3/(gm4CL). 可求出 gm4=(2gm2gm3/(gm4CL))^0.5. 代入到单位增益带宽公式可得 UGB_gm2,gm3=(2gm2gm3/(Cp2*CL))^0.5

和NMC相类似,gm2,gm3闭环的3dB频率等于 开环的单位增益带宽,gm2,gm3闭环的主极点也是这个频点 p2=(2gm2gm3/(Cp2*CL))^0.5

整体系统的单位增益带宽等于 gm1/Cm1, 为了保证整体开环60°相位裕度, UGB=gm1/Cm1=1/2*p2=1/2*(2*gm2*gm3/(Cp2*CL))^0.5 =(2*gm2*CL/(gm3*Cp2)^0.5 * 1/4*gm3/CL

1/4*gm3/CL是NMC的UGB, 可见 DFCFC 提高了系统带宽,尤其当CL较大时。

对比论文公式:

反馈系统

反馈系统

当CL>>Cp2时 β ~= (2gm2CL/(gm3*Cp2)^0.5。 上述分析的结果和论文结果近似。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分