功率芯片是什么?
近年来,我国已成为全球发电量第一的大国。电能一直是人类消耗的最大能源,是目前最为重要的一种能源形式之一。为满足发电,输电和用电的各种不同要求需求,几乎所有的电能从生产到消耗的过程中都要经过电压、电流、频率等参数的转换以后才能供设备使用。而电能的转换本质是利用功率芯片的开关作用,实现弱电对强电的控制,对电能(功率)进行处理。
图1 2021年世界各国发电量排名
日益严重的能源和环境问题使得我们对电能变换的效率、频率越来越关注。在这一背景下,功率半导体芯片的应用范围也得到了急剧的扩大。仔细观察一下就会发现,功率芯片几乎无处不在,大到机车牵引、船舶推进及风力发电、太阳能发电等新能源系统,小到手机、洗衣机、冰箱、空调等家电,功率芯片都在其中起到关键的控制作用。
图2 功率芯片在新能源汽车中的应用
我们每天使用的智能手机也包含大量功率芯片,然而我们拿到手机却看不到任何的芯片,这是因为芯片包含在集成电路的内部。手机内部存在多个电路板,电路板上有若干黑色方块,称之为集成电路。数量庞大的集成电路才构成了手机多样的功能。集成电路既常说的芯片的学名。但是,集成电路并不等同于芯片。我们将图3中集成电路的黑色封装材料去除后,才能看到真正的芯片(图3右上方)。
图3 功率芯片在智能手机中的应用
芯片是通过半导体搭建而成的庞大冗杂的系统,它由数以亿计个晶体管构成。晶体管极其微小,无法通过肉眼观察内部结构,只能由外部测试来推演其工作机理。为了分析晶体管的工作机理,我们将芯片类比为三峡大坝水电站。三峡水电站存在大坝,大坝上存在闸门,大坝内部存在发电机。当我们控制闸门开启时,水流将促使发电机发电。通常在闸门上有控制系统,用来控制闸门的关闭和开启,从而决定大坝发电机的发电与否。与发电机功率相比,控制系统功率较小,用小功率控制系统控制闸门的开关过程,使发电机发电。水流速度越高,发电机的发电量越大。因此该控制系统实现了“以小控大”的作用。
当闸门全部打开时,水流经过发电机从而发电,我们用ON来代表。当闸门全部关闭时,没有水流,发电机不能发电,我们用OFF来代表。而晶体管工作原理就与该三峡大坝水电站工作原理相类似,它可以用弱电对强电进行控制。
图4 晶体管的工作原理
功率芯片有哪些?
我们可以按集成度将功率芯片分为功率分立器件(下文简称功率器件)和功率集成电路(下文简称功率IC),如图5所示。功率器件包含二极管、晶体管和晶闸管,其中晶体管包含目前较为火热的功率MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)和IGBT(Insulated Gate Bipolar Translator),它们被广泛运用于新能源产业和日常家电。功率IC是指将功率器件控制电路、外围接口电路及保护电路等集成在同一芯片及在此基础上集成功率器件的IC。
图5 功率芯片分类
不同的功率芯片具有不同的电压电流等级和体积等特性。我们在实际使用中,针对不同应用场景对应的功率和频率,各领域产品应使用相应的功率芯片。如图6所示为例,功率MOSFET因其开关高频、低损耗特性,主要应用于手机、PC、车载、照明、TV等领域。IGBT因其耐压高、开关速度快特性,主要应用于变频家电、新能源汽车、工业领域。随着技术的不断进步,功率半导体器件也在不断发展。自20世纪80年代以来,功率半导体器件MOSFET、IGBT和功率集成电路已逐渐成为主流应用类型。同时,碳化硅(SiC)基和氮化镓(GaN)基等使用第三代半导体材料的功率芯片近年来发展迅速。
图6 功率芯片应用领域
功率芯片为什么是我国半导体产业崛起的突破口?
在半导体产业界,一直遵循著名的摩尔定律。该定律在1965年由戈登·摩尔提出,他预测到芯片的集成度大概每过一年翻一番。过了将近六十年的时间,人们在回顾半导体产业的发展时,惊奇地发现摩尔预测的非常准确。于是,人们产生了另外一个疑问,我们应该用什么样的方法延续芯片的发展速度,每年都能让集成度翻番。
在1974年,罗伯特·登纳德提出了等比例缩小法则,该方法讲的就是如何去实现摩尔定律。提到摩尔定律,我们需要记住:每代工艺与上一代相比,在面积不变的情况下,晶体管的数量翻一番;或者说在晶体管数量不变的情况下,面积可以缩小到原来的二分之一。按照这样的发展速度,每18个月它的集成度就要翻一番。因此它是2的N次方的发展速度。从图7中我们可以看到在16纳米的时候,我们可以在一个平方毫米的面积上集成大概400多万个逻辑门,约1500万个晶体管。而到了5纳米时,我们可以在一个平方毫米的面积上集成2800万个逻辑门,约1亿多个晶体管!
图7 芯片中的晶体管密度指数上升
而我们国家半导体产业主要受限于14纳米以下芯片制造环节。长期以来,摩尔定律的延续依赖于芯片制程的缩小。芯片制程的缩小及主要代表器件、方向如图8所示。
图8 芯片线程的发展及主要代表器件
一般而言,芯片制程越小,芯片的集成度越高,性能也更加优越。目前国外先进芯片厂商已进行3nm芯片制程工艺研究,而我们国家最先进的芯片制程和技术却停留在14nm的FinFET技术,与国外差距较大且短时间内难以弥补。抛开美国等国家对我国的技术封锁不谈,先进芯片制程的投入也十分巨大。据公开市场的数据,3nm芯片的设计费用约达5-15亿美元,兴建一条3nm产线的成本高达150-200亿美元!
而功率芯片的制备却不需要很小的线程,一般来讲,0.18um(180nm)是功率器件常用的制造线程。国外功率芯片厂商最先进的芯片制程也只有65nm,而我们国家所产出的满足轨道交通应用的IGBT芯片也只是0.35um(350nm),这同手机芯片用到的最先进的制程相比,功率芯片制备难度也小很多。因为功率芯片制程相对较大,制造技术相对较老,受到美国等国家卡脖子的地方更小。因此,从制造方面来讲,我们国家芯片厂商也可以制造时下最先进的功率芯片。
来源:半导体功率生态圈
审核编辑:汤梓红
全部0条评论
快来发表一下你的评论吧 !