使用NVIDIA TensorRT-LLM支持CodeFuse-CodeLlama-34B上的int4量化和推理优化实践

描述

使其可部署在 24GB 显存的单张 NVIDIA A10 Tensor Core GPU

概述

CodeFuse是由蚂蚁集团开发的代码语言大模型,旨在支持整个软件开发生命周期,涵盖设计、需求、编码、测试、部署、运维等关键阶段。

为了在下游任务上获得更好的精度,CodeFuse 提出了多任务微调框架(MFTCoder),能够解决数据不平衡和不同收敛速度的问题。

通过对比多个预训练基座模型的精度表现,我们发现利用 MFTCoder [1,2] 微调后的模型显著优于原始基座模型。其中,尤为值得关注的是采用了 MFTCoder 框架,并利用多任务数据集进行微调的 CodeFuse-CodeLlama-34B [3] 模型,在 HumanEval 评估数据集中取得了当时的最好结果。具体来说,基于 CodeLlama-34b-Python 模型进行微调的 CodeFuse-CodeLlama-34B 在 HumanEval-python 上实现了 74.4% 的 pass@1(贪婪解码)。以下是完整的代码能力评估结果 :

GPT

在代码补全、text2code、代码翻译、单测生成以及代码生成任务上,CodeFuse-CodeLlama-34B 全面超过 GPT-3.5;CodeFuse-CodeLlama-34B 能够在单测生成和代码补全(HumanEval )任务上超过 GPT-4。同时,上述微调模型、MFTCoder 训练框架和高质量代码数据集已经开源。

然而,CodeFuse-CodeLlama-34B 的部署遇到了如下两个挑战:

1)数据类型为 fp16 的 34B 模型,显存占用为 68 GB,至少需要 3 张 A10 才能加载模型,部署成本很高;

2)在模型推理的生成阶段,通常伴随着长条形的矩阵运算,此时计算量较小,不足以掩盖 GPU 的访存延迟,即 memory bound 问题,此时程序的性能受限于 GPU 带宽。

为了解决上述问题,我们利用 GPTQ 量化技术,在降低了部署成本的同时,也缓解了 GPU 的带宽压力 ,从而显著提升了推理速度。最终,CodeFuse-CodeLlama-34B 的 int4 量化模型可以部署在单张 A10 显卡上,推理速度可以达到 20 tokens/s (batch_size=1)。同时,相较于 fp16 数据精度的模型,通过算法上的优化,int4 量化引入的精度下降可以控制在 1% 以内。下面,我们从模型量化和测试两个方面展示我们是如何实现 CodeFuse-CodeLlama-34B 模型的 int4 量化部署的。另外,TensorRT-LLM 也支持了 CodeFuse 中基于 MFTCoder 训练的开源模型部署。

CodeFuse-CodeLlama-34B int4 量化

这里我们使用 GPTQ [4] 技术对模型进行 int4 量化。GPTQ 是对逐层量化范式经典框架 OBQ(Optimal Brain Quantization)[5] 的高效实现,能够利用单张 A100-80G 在 4 小时内完成 OPT-175B 模型的量化,并且可以获得较好的准确率。

另外,我们这里采用了静态量化方式,即通过矫正数据离线地进行量化,得到诸如缩放因子和零点的量化参数,在推理时不再进行量化参数的更新。与之对应的是动态量化,会在模型推理的同时根据输入进行量化参数的调整。最后,我们这里进行的是 int4-weight-only 量化,即只对权重进行量化而不对层输入进行量化,即 W4A16 量化。

GPTQ 算法

为了量化权重GPT,OBQ 框架对层重建损失函数GPT进行二阶泰勒级数展开,同时假设在未量化的权重值处一阶梯度为零,从而得到如下优化问题:

GPT

其中,GPT是所有未量化权重对应的 Hessian 矩阵。那么,量化误差以及权重更新值分别为

GPT

上面的两个公式意味着所有未量化权重需要通过GPT更新以补偿量化带来的量化误差。同时,层重建损失函数可以按照输出通道(output channel, OC)分解为独立的子问题,例如:

GPT

其中 Hessian 矩阵为GPT。为了充分利用 GPU 的能力,GPTQ 做了如下三个改进:

所有输出通道共享相同的量化顺序,从而使得行间共享同一份 Hessian 矩阵,大大减少了算法计算量。

使用一次 Cholesky 分解代替了在 GPTQ 每次迭代中对整个 Hessian 矩阵的逆矩阵的高斯消元迭代更新方式。既大大减少了计算量,又得以利用成熟 GPU 矩阵库中的 Cholesky 算法,且避免了迭代更新方式在矩阵运算中所带来的数值不稳定问题。

通过将整个计算过程由对单个输入通道进行更新,等效转变为划分 batch 并逐 batch 更新的方式,避免了每次量化对整个 Hessian 与权重矩阵的 GPU 读写操作,大大降低了 GPU 访存数量。

上述的改进使得 GPTQ 可以有效提升 GPU 利用率,从而能够对大模型进行高效量化。

int4-weight-only 量化

这里我们利用开源工具 AutoGPTQ进行量化,工具超参数如下;

GPT

利用 AutoGPTQ 进行模型加载和推理的例子如下:

 

import os
import torch
import time
from modelscope import AutoTokenizer, snapshot_download
from auto_gptq import AutoGPTQForCausalLM


os.environ["TOKENIZERS_PARALLELISM"] = "false"


def load_model_tokenizer(model_path):
    """
    Load model and tokenizer based on the given model name or local path of downloaded model.
    """
    tokenizer = AutoTokenizer.from_pretrained(model_path, 
                                              trust_remote_code=True, 
                                              use_fast=False,
                                              lagecy=False)
    tokenizer.padding_side = "left"
    tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("")
    tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("")


    model = AutoGPTQForCausalLM.from_quantized(model_path, 
                                                inject_fused_attention=False,
                                                inject_fused_mlp=False,
                                                use_cuda_fp16=True,
                                                disable_exllama=False,
                                                device_map='auto'   # Support multi-gpus
                                              )
    return model, tokenizer




def inference(model, tokenizer, prompt):
    """
    Uset the given model and tokenizer to generate an answer for the speicifed prompt.
    """
    st = time.time()
    inputs = prompt if prompt.endswith('
') else f'{prompt}
'


    input_ids = tokenizer.encode(inputs, 
                                  return_tensors="pt", 
                                  padding=True, 
                                  add_special_tokens=False).to("cuda")
    with torch.no_grad():
        generated_ids = model.generate(
            input_ids=input_ids,
            top_p=0.95,
            temperature=0.1,
            do_sample=True,
            max_new_tokens=512,
            eos_token_id=tokenizer.eos_token_id,
            pad_token_id=tokenizer.pad_token_id              
        )
    print(f'generated tokens num is {len(generated_ids[0][input_ids.size(1):])}')
    outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) 
    print(f'generate text is {outputs[0][len(inputs): ]}')
    latency = time.time() - st
    print('latency is {} seconds'.format(latency))


    
if __name__ == "__main__":
    model_dir = snapshot_download('codefuse-ai/CodeFuse-CodeLlama-34B-4bits', revision='v1.0.0')


    prompt = 'Please write a QuickSort program in Python'


    model, tokenizer = load_model_tokenizer(model_dir)
    inference(model, tokenizer, prompt)

 

在做静态量化时,GPTQ 使用矫正数据集作为输入计算 Hessian 矩阵,从而更新未量化权重进而补偿量化带来的误差。如果推理阶段的输入和矫正数据集有偏差(bias),那么量化时用矫正数据得到的 Hessian 矩阵就无法完全反映推理输入,这会导致 GPTQ 的误差补偿失效(失效的程度和偏差成正比),出现量化模型在推理输入上量化误差变大的情况,进而导致量化模型的精度下降。

为了解决上述问题,对于微调模型,我们使用了一种数据分布对齐技术减少模型量化带来的损失。通过抽取训练数据(CodeFuse 开源的高质量代码数据集 evol)中的 Question 作为引导方式,利用原始模型生成 Answer,将 Question 和 Answer 拼接起来作为矫正数据;最终在 HumanEval Benchmarks 的 Python pass@1 取得了 73.8% 的准确率,相较于 bf16 模型仅有 0.6% 的精度损失。同时,在 CMNLI 和 C-Eval 两个数据集的精度损失也比较少。

GPT

构建 TensorRT 引擎

在通过 AutoGPTQ 可以得到 safetensors 格式的 int4 量化模型 [6] 后,我们的目标是构建单卡 TensorRT 引擎,同时保证 activation 是 fp16 的数据精度。通过 examples/llama/build.py 进行 TensorRT 引擎构建时,需要关注如下参数:

dtype:设置为 fp16

use_gpt_attention_plugin:设置为 fp16,构建引擎时利用 gpt a ttention plugin 并且数据精度为 fp16

use_gemm_plugin:设置为 fp16,构建引擎时利用 gemm_plugin 并且数据精度为 fp16

use_weight_only:触发 weight only 量化

weight_only_precision:设置为 int4 _gptq,表示构建 W4A16 的 GPTQ 量化模型引擎

per_group:gptq 为group-wise 量化,所以需要触发 per-group

max_batch_size: TensorRT 引擎最大允许 batch size

max_input_len:TensorRT 引擎最大允许输入长度

max_output_len:TensorRT 引擎最大允许输出长度 

综上,我们在单卡 A10/A100 上构建 TensorRT 引擎的命令如下:

 

python build.py --model_dir  "${model_dir}" 
                --quant_safetensors_path "${quant_safetensors_path}" 
                --dtype float16 
                --use_gpt_attention_plugin float16 
                --use_gemm_plugin float16 
                --use_weight_only 
                --weight_only_precision int4_gptq 
                --max_batch_size 1 
                --max_input_len 2048 
                --max_output_len 1024 
                --per_group 
                --output_dir "${engin_dir}" 2>&1  | tee dev_build.log

 

测试

性能

下面,我们主要测试了 batch size 为 1 时,不同的输入输出长度和量化精度情况下,TensorRT-LLM 在 A10/A100 上的推理速度表现。可以看到,在 A100 上,TensorRT-LLM 的 int4 相对 fp16,最高能够带来 2.4 倍的加速,相对 int8 最高也能带来 1.7 倍的加速。

GPT

注意:以上性能测试均基于 TensorRT-LLM 的 0.6.1 版本

显存占用和结果测试

我们测量了模型加载后占用的显存占用情况,以及输入 2048/1024 tokens 并输出 1024/2048 tokens 时的显存使用情况;同时我们也测试了量化前后的精度情况,如下表所示:

GPT

可见,4bit 量化后,显存占用大幅缩小,在一张 A10(24GB 显存)上就能部署 34B 的大模型,具备非常好的实用性。

模型演示

我们通过终端命令行 [7] 以及网页聊天机器人 [8] 两种不同的方式,展示我们最终的推理效果,具体细节可以访问开源的链接。 

Cli Demo

GPT

Webui Demo

总结

在这篇文章中,我们介绍了如何使用 TensorRT-LLM 来加速 CodeFuse 的推理性能。具体而言,我们按照顺序展示了如何使用 GPTQ Int4 量化方法、增强 GPTQ 量化算法精度的自动对齐技术、TensorRT-LLM int4 量化模型的使用方法以及相应的评估过程。通过 TensorRT-LLM 的支持,CodeFuse 实现了较低的推理延迟和优化的部署成本。






审核编辑:刘清

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分