高级设计:SDR SDRAM驱动设计

描述

随机访问存储器(RAM)分为静态RAM(SRAM)和动态RAM(DRAM)。由于动态存储器存储单元的结构非常简单,所以它能达到的集成度远高于静态存储器。但是动态存储器的存取速度不如静态存储器快。

RAM的动态存储单元是利用电容可以存储电荷的原理制成的。由于存储单元的机构能够做得很简单,所以在大容量、高集成度的RAM中得到了普遍的应用。但是由于电容的容量很小,而漏电流又不可能绝对等于零,所以电荷保存的时间有限。为了及时补充漏掉的电荷以避免存储的信号丢失,必须定时地给电容补充电荷,通常将这种操作称为刷新。

逻辑分析仪

行列地址线被选中后,数据线(data_bit)直接和电容相连接。当写入时,数据线给电容充放电;读取时,电容将数据线拉高或者置低。

SDRAM 的全称即同步动态随机存储器(Synchronous Dynamic Random Access Memory);这里的同步是指其时钟频率与对应控制器的系统时钟频率相同,并且内部命令的发送与数据传输都是以该时钟为基准;动态是指存储阵列需要不断的刷新来保证数据不丢失。

SDR SDRAM中的SDR是指单数据速率,即每一根数据线上,每个时钟只传输一个bit的数据。SDR SDRAM的时钟频率可以达到100MHz以上,按照100MHz的速率计算,一片16位数据宽度的SDR SDRAM的读写数据带宽可以达到1.6Gbit/s。

SANXIN – B01的开发板上有一个容量为256Mbit(16M x 16bit)的SDR SDRAM(H57V2562GTR)。其内部存储时,分为了4个独立的区域(BANK),每个bank为4Mx16bit的存储空间;每个bank在存储时,按照二维的方式进行存储,利用行列来进行确定,有8192行(13bit地址线),有512列(9bit地址线),8192 x 512为4M的存储量。

在进行指定某个地址时,共需要2位bank地址,13位行地址,9位列地址,合计共24位地址。但是在SDR SDRAM的指定某个地址时,行地址和列地址不是同时给出,SDR SDRAM采用行列地址线复用,所以地址线合计为2(bank 地址)+13(行、列地址复用)。

SDR SDRAM需要时钟端和时钟使能端。SDR SDRAM所有的操作都依靠于此时钟;当时钟使能端无效时,SDR SDRAM自动忽略时钟上升沿。

SDR SDRAM拥有四个命令控制线,分别为CS、RAS、CAS、WE。组成的命令表如下:

逻辑分析仪

在写入数据时,有时会出现不想对某8bit进行写入,就可以采用DQM进行控制。

SDR SDRAM的内部机构为:

逻辑分析仪

由于SDR SDRAM为DRAM,内部的存储都是靠电容进行保存数据,电容的保持数据的时间为64ms,SDR SDRAM每次只能够刷新一行,为了不丢失任何数据,所以要保证64ms内,将所有的行都要刷新一遍。

SDR SDRAM支持读写的长度为1、2、4、8和一行(整页)。

具体的SDR SDRAM的介绍可以查看手册。下面只介绍几个相对重要的时序图。

在SDR SDRAM正常使用之前,需要进行初始化。初始化的时序图如下:

逻辑分析仪

在PRECHARGE时,A10为高,表示选中所有的bank;A10为低,表示选中BA0、BA1所指定的bank。初始化中,A10置高。

在LOAD MOOE REGISTER中,采用地址线进行配置模式寄存器。说明如下:

逻辑分析仪

在模式配置中,利用CL(CAS Latency)表示列选通潜伏期,利用BL(Burst Length)表示突发长度。

SDR SDRAM中有内部的刷新控制器和刷新的行计数器,外部控制器只需要保证在64ms之内进行8192次刷新即可。

在进行PRECHARGE时,A10要为高电平。

逻辑分析仪

SDR SDRAM中,我们可以在任意位置进行写入。写入的时序图如下:

逻辑分析仪

SDR SDRAM中,我们可以在任意位置进行读出。读出的时序图如下:

逻辑分析仪

在各个时序中的时序参数如下:

逻辑分析仪

逻辑分析仪

设计要求

设计一个突发长度为2,列选通潜伏期为2的SDR SDRAM的控制器。

设计分析

该控制器共有四部分功能,初始化、刷新、写和读。四部分的执行控制采用一个模块来控制。

SDR SDRAM必须要进行初始化,初始化只用执行一次。然后启动一个计时器,等计时器达到后,进行刷新。在刷新的间隔中,根据读写的要求进行读写。

四个模块都会对SDR SDRAM的命令线和地址线进行控制,所以输出时,采用多路选择器对齐进行选择输出。

四个模块按照对应的时序图进行编写代码即可。

架构设计和信号说明

该控制器命名为sdr_drive。

逻辑分析仪

pll_sdr(锁相环模块):产生驱动所需要的100MHz的时钟(0度相位)、SDR SDRAM所需要的100MHz的时钟(270度相位)、以及PLL锁定信号当作系统复位使用。

timer(刷新计时器):当启动计时器后,开始计时,当计时到规定时间后,输出刷新请求,计数器直接清零计数计数。当控制器响应后,输出清除信号后,刷新请求拉低。

refresh(刷新模块)、init(初始化模块)、sdr_write(写模块)、sdr_read(读模块):当启动模块后,按照规定的时序进行输出即可,然后输出完成信号。

sdr_ctrl(控制模块):控制各个模块协调工作。

mux4_1(四选一多路选择器模块):选择对应的bus总线作为输出。

*_bus的组成为:高四位为sdr_cs_n、sdr_ras_n、sdr_cas_n、sdr_we_n。然后是bank的两位,后续为13位的sdr_addr。

逻辑分析仪

逻辑分析仪

逻辑分析仪

sdr_drive_head声明

将驱动中用到各种参数定义在该文件中。

 

`define       SDR_ADDR_WIDTH                    13
`define       SDR_COL_ADDR_WIDTH                9
`define       SDR_REFRESH_TIME                  64_000_000


`define       ADDR_WIDTH   2 + `SDR_ADDR_WIDTH + `SDR_COL_ADDR_WIDTH
`define       BUS_WIDTH    4 + 2 + `SDR_ADDR_WIDTH


`define       CMD_INH                           4'b1000
`define       NOP                               4'b0111
`define       ACT                               4'b0011
`define       RD                                4'b0101
`define       WR                                4'b0100
`define       BT                                4'b0110
`define       PREC                              4'b0010
`define       REFR                              4'b0001
`define       LMR                               4'b0000


`define       PU_DELAY                          20_000
`define       Trp                               3
`define       Trfc                              7
`define       Tmrd                              3
`define       Trcd                              3
`define       Twr                               3
`define       Tcl                               2


`define       CODE                             13'b000_0_00_010_0_001
`define     REFRESH_TIME  (`SDR_REFRESH_TIME/(2**`SDR_ADDR_WIDTH))/10

 

pll_sdr设计实现

该模块为IP core,输出0相位的100MHz(系统时钟)和270相位的100MHz(SDR的时钟)。系统设计中,信号在上升沿输出;对于外部器件(相位调整为270),能够较好的满足建立和保持时间。

init设计实现

该模块负责将SDR SDRAM进行初始化。上电延迟(PU_DELAY)设置为200us;预充电时间(Trp)设置为3个时钟周期(30ns);自刷新时间(Trfc)设置为7个时钟周期(70ns);模式寄存器应用时间(Tmrd)设置为3个时钟周期(30ns);突发长度为2;列选通潜伏期为3。

按照对应的初始化的时序图,做出如下设计。

本模块采用状态机的方式设计实现。

逻辑分析仪

设计代码为:

 

`include "../rtl/sdr_drive_head.v"


module init (


  input     wire                                  clk,
  input     wire                                  rst_n,


  input     wire                                  init_en,
  output    reg                                   init_done,


  output    wire        [`BUS_WIDTH - 1 : 0]      init_bus
);


  localparam      IDLE              =             7'b000_0001;
  localparam      PUD               =             7'b000_0010;
  localparam      PRECHARGE         =             7'b000_0100;
  localparam      AUTOREFR1         =             7'b000_1000;
  localparam      AUTOREFR2         =             7'b001_0000;
  localparam      LMR_STATE         =             7'b010_0000;
  localparam      INITDONE          =             7'b100_0000;


  reg                   [6:0]                     c_state;
  reg                   [6:0]                     n_state;
  wire                  [1:0]                     sdr_bank;
  reg                   [3:0]                     sdr_cmd;
  reg                   [`SDR_ADDR_WIDTH - 1 : 0] sdr_addr;
  reg                   [14:0]                    cnt;                    


  assign sdr_bank = 2'b00;
  assign init_bus = {sdr_cmd,sdr_bank,sdr_addr};


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      c_state <= IDLE;
    else
      c_state <= n_state;
  end


  always @ * begin
    case (c_state)
      IDLE        :     begin
        if (init_en == 1'b1)
          n_state = PUD;
        else
          n_state = IDLE;
      end


      PUD         :     begin
        if (cnt == `PU_DELAY - 1'b1)
          n_state = PRECHARGE;
        else
          n_state = PUD;
      end


      PRECHARGE   :     begin
        if (cnt == `Trp - 1'b1)
          n_state = AUTOREFR1;
        else
          n_state = PRECHARGE;
      end


      AUTOREFR1   :     begin
        if (cnt == `Trfc - 1'b1)
          n_state = AUTOREFR2;
        else  
          n_state = AUTOREFR1;
      end


      AUTOREFR2   :     begin
        if (cnt == `Trfc - 1'b1)
          n_state = LMR_STATE;
        else  
          n_state = AUTOREFR2;
      end


      LMR_STATE   :     begin
        if (cnt == `Tmrd - 1'b1)
          n_state = INITDONE;
        else
          n_state = LMR_STATE;
      end


      INITDONE    :     begin
        n_state = INITDONE;
      end


      default     :   n_state = IDLE;
    endcase
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      sdr_cmd <= `NOP;
    else
      case (c_state)
        IDLE        :   sdr_cmd <= `NOP;
        PUD         :   begin
          if (cnt == `PU_DELAY - 1'b1)
            sdr_cmd <= `PREC;
          else
            sdr_cmd <= `NOP;
        end
        PRECHARGE   :   begin
          if (cnt == `Trp - 1'b1)
            sdr_cmd <= `REFR;
          else
            sdr_cmd <= `NOP;
        end
        AUTOREFR1   :   begin
          if (cnt == `Trfc - 1'b1)
            sdr_cmd <= `REFR;
          else
            sdr_cmd <= `NOP;
        end
        AUTOREFR2   :   begin
          if (cnt == `Trfc - 1'b1)
            sdr_cmd <= `LMR;
          else
            sdr_cmd <= `NOP;
        end
        LMR_STATE   :   sdr_cmd <= `NOP;
        INITDONE    :   sdr_cmd <= `NOP;
        default     :   sdr_cmd <= `NOP;
      endcase
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      cnt <= 15'd0;
    else
      case (c_state)
        IDLE        :   cnt <= 16'd0;
        PUD         :   begin
          if (cnt < `PU_DELAY - 1'b1)
            cnt <= cnt + 1'b1;
          else
            cnt <= 16'd0;
        end


        PRECHARGE    :   begin
          if (cnt < `Trp - 1'b1)
            cnt <= cnt + 1'b1;
          else
            cnt <= 16'd0;
        end
        AUTOREFR1    :   begin
          if (cnt < `Trfc - 1'b1)
            cnt <= cnt + 1'b1;
          else
            cnt <= 16'd0;
        end
        AUTOREFR2    :   begin
          if (cnt < `Trfc - 1'b1)
            cnt <= cnt + 1'b1;
          else
            cnt <= 16'd0;
        end
        LMR_STATE    :   begin
          if (cnt < `Tmrd - 1'b1)
            cnt <= cnt + 1'b1;
          else
            cnt <= 16'd0;
        end
        INITDONE    :   cnt <= 16'd0;
        default     :   cnt <= 16'd0;
      endcase
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      init_done <= 1'b0;
    else
      if (c_state == LMR_STATE && cnt == `Tmrd - 1'b1)
        init_done <= 1'b1;
      else
        init_done <= 1'b0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      sdr_addr <= 0;
    else
      if (c_state == PUD && cnt == `PU_DELAY - 1'b1)
        sdr_addr[10] <= 1'b1;
      else
        if (c_state == AUTOREFR2 && cnt == `Trfc - 1'b1)
          sdr_addr <= `CODE;
        else
          sdr_addr <= 0;
  end


endmodule

 

timer设计实现

SDR SDRAM内部构造为DRAM,需要不间断的刷新,要求64ms刷新一遍。每次刷新为一行,开发板上的SDR SDRAM共有8192行,平均需要7812.5ns刷新一次,我们选择7810刷新一次。

到达规定的刷新时间时,控制器有可能正在进行其他的操作。在设计时,达到时间后,发出刷新请求,当外部执行刷新后,将次请求清除。发出刷新请求的同时,计数器重新归零计数。

 

`include "../rtl/sdr_drive_head.v"


module timer (


  input   wire                    clk,
  input   wire                    rst_n,


  input   wire                    time_en,
  input   wire                    req_clr,


  output  reg                     refresh_req
);


  reg               [9:0]         cnt;


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      cnt <= 10'd0;
    else
      if (time_en == 1'b1 && cnt < `REFRESH_TIME - 1'b1)
        cnt <= cnt + 1'b1;
      else  
        cnt <= 10'd0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      refresh_req <= 1'b0;
    else
      if (cnt == `REFRESH_TIME - 1'b1)
        refresh_req <= 1'b1;
      else
        if (req_clr == 1'b1)
          refresh_req <= 1'b0;
        else
          refresh_req <= refresh_req;
  end


endmodule

 

refresh设计实现

该模块负责刷新,按照对应的时序图进行控制即可。

该模块利用状态机的方式实现。状态转移图如下:

逻辑分析仪

设计代码为:

 

`include "../rtl/sdr_drive_head.v"


module refresh (


  input     wire                                  clk,
  input     wire                                  rst_n,


  input     wire                                  refresh_en,
  output    reg                                   refresh_done,


  output    wire        [`BUS_WIDTH - 1 : 0]      refresh_bus
);


  localparam      IDLE              =             5'b0_0001;
  localparam      PRECHARGE         =             5'b0_0010;
  localparam      AUTOREFR1         =             5'b0_0100;
  localparam      AUTOREFR2         =             5'b0_1000;
  localparam      REFRDONE          =             5'b1_0000;


  reg                   [4:0]                     c_state;
  reg                   [4:0]                     n_state;
  wire                  [1:0]                     sdr_bank;
  reg                   [3:0]                     sdr_cmd;
  reg                   [`SDR_ADDR_WIDTH - 1 : 0] sdr_addr;
  reg                   [3:0]                     cnt;                    


  assign sdr_bank = 2'b00;
  assign refresh_bus = {sdr_cmd,sdr_bank,sdr_addr};


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      c_state <= IDLE;
    else
      c_state <= n_state;
  end


  always @ * begin
    case (c_state)
      IDLE        :     begin
        if (refresh_en == 1'b1)
          n_state = PRECHARGE;
        else
          n_state = IDLE;
      end


      PRECHARGE   :     begin
        if (cnt == `Trp - 1'b1)
          n_state = AUTOREFR1;
        else
          n_state = PRECHARGE;
      end


      AUTOREFR1   :     begin
        if (cnt == `Trfc - 1'b1)
          n_state = AUTOREFR2;
        else  
          n_state = AUTOREFR1;
      end


      AUTOREFR2   :     begin
        if (cnt == `Trfc - 1'b1)
          n_state = REFRDONE;
        else  
          n_state = AUTOREFR2;
      end


      REFRDONE    :     begin
        n_state = IDLE;
      end


      default     :   n_state = IDLE;
    endcase
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      sdr_cmd <= `NOP;
    else
      case (c_state)
        IDLE        :   begin
          if (refresh_en == 1'b1)
            sdr_cmd <= `PREC;
          else
            sdr_cmd <= `NOP;
        end
        PRECHARGE   :   begin
          if (cnt == `Trp - 1'b1)
            sdr_cmd <= `REFR;
          else
            sdr_cmd <= `NOP;
        end
        AUTOREFR1   :   begin
          if (cnt == `Trfc - 1'b1)
            sdr_cmd <= `REFR;
          else
            sdr_cmd <= `NOP;
        end
        AUTOREFR2   :   sdr_cmd <= `NOP;


        REFRDONE    :   sdr_cmd <= `NOP;
        default     :   sdr_cmd <= `NOP;
      endcase
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      cnt <= 4'd0;
    else
      case (c_state)
        IDLE        :   cnt <= 4'd0;


        PRECHARGE    :   begin
          if (cnt < `Trp - 1'b1)
            cnt <= cnt + 1'b1;
          else
            cnt <= 4'd0;
        end
        AUTOREFR1    :   begin
          if (cnt < `Trfc - 1'b1)
            cnt <= cnt + 1'b1;
          else
            cnt <= 4'd0;
        end
        AUTOREFR2    :   begin
          if (cnt < `Trfc - 1'b1)
            cnt <= cnt + 1'b1;
          else
            cnt <= 4'd0;
        end
        REFRDONE    :   cnt <= 4'd0;
        default     :   cnt <= 4'd0;
      endcase
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      refresh_done <= 1'b0;
    else
      if (c_state == AUTOREFR2 && cnt == `Trfc - 1'b1)
        refresh_done <= 1'b1;
      else
        refresh_done <= 1'b0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      sdr_addr <= 0;
    else
      if (c_state == IDLE && refresh_en == 1'b1)
        sdr_addr[10] <= 1'b1;
      else
        sdr_addr <= 0;
  end


endmodule

 

sdr_write设计实现

该模块负责将外部的数据写入到规定的地址中去。在SDR SDRAM中,每操作(读写)一次,都会引起该存储位的漏电,每次结束时,可以进行预充电。SDR SDRAM提供了自动预充电的机制,在读写命令时,sdr_addr[10]=1,即可自动预充电。在设计时,应该要为自动预充电预留出足够的时间。

根据对应的写入时序图,利用状态机完成此设计。

逻辑分析仪

设计代码如下:

 

`include "../rtl/sdr_drive_head.v"


module sdr_write (


  input     wire                            clk,
  input     wire                            rst_n,


  input     wire                            write_en,
  input     wire  [`ADDR_WIDTH - 1 : 0]     wr_addr,
  input     wire  [31:0]                    wr_data,


  output    reg   [15:0]                    odq,
  output    wire  [`BUS_WIDTH - 1 : 0]      wr_bus,
  output    reg                             wr_done
);


  localparam    IDLE            =           4'b0001;
  localparam    ACT_STATE       =           4'b0010;
  localparam    WR1             =           4'b0100;
  localparam    WR2             =           4'b1000;


  reg                   [3:0]                     c_state;
  reg                   [3:0]                     n_state;
  wire                  [1:0]                     sdr_bank;
  reg                   [3:0]                     sdr_cmd;
  reg                   [`SDR_ADDR_WIDTH - 1 : 0] sdr_addr;
  reg                   [14:0]                    cnt;                    


  assign sdr_bank = wr_addr[23:22];
  assign wr_bus = {sdr_cmd,sdr_bank,sdr_addr};


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      c_state <= IDLE;
    else
      c_state <= n_state;
  end


  always @ * begin
    case (c_state)
      IDLE        :   begin
        if (write_en == 1'b1)
          n_state = ACT_STATE;
        else
          n_state = IDLE;
      end


      ACT_STATE   :   begin
        if (cnt == `Trcd - 1'b1)
          n_state = WR1;
        else
          n_state = ACT_STATE;
      end


      WR1         :    n_state = WR2;


      WR2         :   begin
        if (cnt == `Twr + `Trp - 1'b1)
          n_state = IDLE;
        else
          n_state = WR2;
      end


      default     :   n_state = IDLE;
    endcase
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      sdr_cmd <= `NOP;
    else
      if (c_state == IDLE && write_en == 1'b1)
        sdr_cmd <= `ACT;
      else
        if (c_state == ACT_STATE && cnt == `Trcd - 1'b1)
          sdr_cmd <= `WR;
        else
          sdr_cmd <= `NOP;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      sdr_addr <= 0;
    else
      if (c_state == IDLE && write_en == 1'b1)
        sdr_addr <= wr_addr[21:9];
      else
        if (c_state == ACT_STATE && cnt == `Trcd - 1'b1) begin
          sdr_addr[10] <= 1'b1;
          sdr_addr[8:0] <= wr_addr[8:0];
        end
        else
          sdr_addr <= 0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      cnt <= 4'd0;
    else
      if (c_state == ACT_STATE && cnt < `Trcd - 1'b1)
        cnt <= cnt + 1'b1;
      else
        if (c_state == WR2 && cnt < `Twr + `Trp - 1'b1)
          cnt <= cnt + 1'b1;
        else
          cnt <= 4'd0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      odq <= 16'd0;
    else
      if (c_state == ACT_STATE && cnt == `Trcd - 1'b1)
        odq <= wr_data[15:0];
      else
        if (c_state == WR1)
          odq <= wr_data[31:16];
        else
          odq <= 16'd0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      wr_done <= 1'b0;
    else
      if (c_state == WR2 && cnt < `Twr + `Trp - 1'b1)
        wr_done <= 1'b1;
      else
        wr_done <= 1'b0;
  end


endmodule

 

sdr_read设计实现

该模块负责从指定的地址中,将数据读出。

按照对应的读时序图即可实现功能,本模块采用状态机方式实现,状态转移图如下:

逻辑分析仪

设计代码为:

 

module sdr_read (


  input   wire                              clk,
  input   wire                              rst_n,


  input   wire                              read_en,
  input   wire    [`ADDR_WIDTH - 1 : 0]     rd_addr,


  input   wire    [15:0]                    sdr_dq,


  output  reg     [31:0]                    rd_data,
  output  reg                               rd_done,


  output  wire    [`BUS_WIDTH - 1 : 0]      rd_bus
);


  localparam    IDLE            =           5'b00001;
  localparam    ACT_STATE       =           5'b00010;
  localparam    READ_STATE      =           5'b00100;
  localparam    RD1             =           5'b01000;
  localparam    RD2             =           5'b10000;


  reg                   [4:0]                     c_state;
  reg                   [4:0]                     n_state;
  wire                  [1:0]                     sdr_bank;
  reg                   [3:0]                     sdr_cmd;
  reg                   [`SDR_ADDR_WIDTH - 1 : 0] sdr_addr;
  reg                   [3:0]                     cnt;                    


  assign sdr_bank = rd_addr[23:22];
  assign rd_bus = {sdr_cmd,sdr_bank,sdr_addr};


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      c_state <= IDLE;
    else
      c_state <= n_state;
  end


  always @ * begin
    case (c_state)
      IDLE        :   begin
        if (read_en == 1'b1)
          n_state = ACT_STATE;
        else
          n_state = IDLE;
      end


      ACT_STATE   :   begin
        if (cnt == `Trcd - 1'b1)
          n_state = READ_STATE;
        else
          n_state = ACT_STATE;
      end


      READ_STATE  :   begin
        if (cnt == `Tcl)
          n_state = RD1;
        else
          n_state = READ_STATE;
      end


      RD1         :   n_state = RD2;


      RD2         :   begin
        if (cnt == `Trp - 1'b1)
          n_state = IDLE;
        else
          n_state = RD2;
      end


      default     :   n_state = IDLE;
    endcase
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      sdr_cmd <= `NOP;
    else
      if (c_state == IDLE && read_en == 1'b1)
        sdr_cmd <= `ACT;
      else
        if (c_state == ACT_STATE && cnt == `Trcd - 1'b1)
          sdr_cmd <= `RD;
        else
          sdr_cmd <= `NOP;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      sdr_addr <= 0;
    else
      if (c_state == IDLE && read_en == 1'b1)
        sdr_addr <= rd_addr[21:9];
      else
        if (c_state == ACT_STATE && cnt == `Trcd - 1'b1) begin
          sdr_addr[10] <= 1'b1;
          sdr_addr[8:0] <= rd_addr[8:0];
        end
        else
          sdr_addr <= 0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      cnt <= 4'd0;
    else
      case (c_state)
        IDLE      :     cnt <= 4'd0;
        ACT_STATE :     begin
          if (cnt < `Trcd - 1'b1)
            cnt <= cnt + 1'b1;
          else
            cnt <= 4'd0;
        end
        READ_STATE:     begin
          if (cnt < `Tcl)
            cnt <= cnt + 1'b1;
          else
            cnt <= 4'd0;
        end


        RD1       :     cnt <= 4'd0;
        RD2       :     begin
          if (cnt < `Trp - 1'b1)
            cnt <= cnt + 1'b1;
          else
            cnt <= 4'd0;
        end
        default   :     cnt <= 4'd0;
      endcase
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rd_data <= 32'd0;
    else
      if (c_state == READ_STATE && cnt == `Tcl)
        rd_data[15:0] <= sdr_dq;
      else
        if (c_state == RD1)
          rd_data[31:16] <= sdr_dq;
        else
          rd_data <= rd_data;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rd_done <= 1'b0;
    else
      if (c_state == RD2 && cnt < `Trp - 1'b1)
        rd_done <= 1'b1;
      else
        rd_done <= 1'b0;
  end


endmodule

 

mux4_1设计实现

该模块负责选择出对应的bus,然后将对应位作为输出即可。

设计代码为:

 

module mux4_1 (


  input   wire  [`BUS_WIDTH - 1 : 0]      init_bus,
  input   wire  [`BUS_WIDTH - 1 : 0]      refresh_bus,
  input   wire  [`BUS_WIDTH - 1 : 0]      wr_bus,
  input   wire  [`BUS_WIDTH - 1 : 0]      rd_bus,
  input   wire  [1:0]                     mux_sel,


  output  wire  [1 : 0]                   sdr_bank,
  output  wire  [`ADDR_WIDTH - 1 : 0]     sdr_addr,
  output  wire                            sdr_cs_n,
  output  wire                            sdr_ras_n,
  output  wire                            sdr_cas_n,
  output  wire                            sdr_we_n
);


  reg           [`BUS_WIDTH - 1 : 0]      sdr_bus;


  assign sdr_cs_n = sdr_bus[18];
  assign sdr_ras_n = sdr_bus[17];
  assign sdr_cas_n = sdr_bus[16];
  assign sdr_we_n = sdr_bus[15];


  assign sdr_bank = sdr_bus[14:13];


  assign sdr_addr = sdr_bus[12:0];


  always @ * begin
    case (mux_sel)
      2'b00       :   sdr_bus = init_bus;
      2'b01       :   sdr_bus = refresh_bus;
      2'b10       :   sdr_bus = wr_bus;
      2'b11       :   sdr_bus = rd_bus;
      default     :   sdr_bus = init_bus;
    endcase
  end


endmodule

 

sdr_ctrl设计实现

该模块负责调度整个控制器,利用状态机实现。

逻辑分析仪

设计代码为:

 

`include "../rtl/sdr_drive_head.v"


module sdr_ctrl (


  input   wire                          clk,
  input   wire                          rst_n,


  input   wire                          wr_en,
  input   wire                          rd_en,
  input   wire    [`ADDR_WIDTH - 1 : 0] addr,
  input   wire    [31:0]                wdata,
  output  reg     [31:0]                rdata,
  output  reg                           rd_valid,


  output  wire                          sdr_busy,


  output  reg     [1:0]                 mux_sel,


  output  reg                           init_en,
  input   wire                          init_done,


  output  reg                           time_en,
  input   wire                          refresh_req,
  output  reg                           req_clr,


  output  reg                           refresh_en,
  input   wire                          refresh_done,


  output  reg                           out_en,
  output  reg                           write_en,
  output  reg     [`ADDR_WIDTH - 1 : 0] wr_addr,
  output  reg     [31:0]                wr_data,
  input   wire                          wr_done,


  output  reg                           read_en,
  output  reg     [`ADDR_WIDTH - 1 : 0] rd_addr,
  input   wire    [31:0]                rd_data,
  input   wire                          rd_done
);


  localparam      IDLE            =     6'b000_001;
  localparam      INIT_STATE      =     6'b000_010;
  localparam      REFRESH_STATE   =     6'b000_100;
  localparam      NO_BUSY         =     6'b001_000;
  localparam      WR_STATE        =     6'b010_000;
  localparam      RD_STATE        =     6'b100_000;


  reg             [5:0]                 c_state;
  reg             [5:0]                 n_state;
  reg                                   wren;
  reg                                   wren_clr;
  reg                                   rden;
  reg                                   rden_clr;
  reg             [`ADDR_WIDTH - 1 : 0] addrr;
  reg             [31:0]                wdatar;
  reg                                   busy;


  assign sdr_busy = busy | rd_en | wr_en;


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      wren <= 1'b0;
    else
      if (wr_en == 1'b1)
        wren <= 1'b1;
      else
        if (wren_clr == 1'b1)
          wren <= 1'b0;
        else
          wren <= wren;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rden <= 1'b0;
    else
      if (rd_en == 1'b1)
        rden <= 1'b1;
      else
        if (rden_clr == 1'b1)
          rden <= 1'b0;
        else
          rden <= rden;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      wdatar <= 32'd0;
    else
      if (wr_en == 1'b1)
        wdatar <= wdata;
      else
        wdatar <= wdatar;
  end 


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      addrr <= 0;
    else
      if (wr_en == 1'b1 || rd_en == 1'b1)
        addrr <= addr;
      else
        addrr <= addrr;
  end 


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      c_state <= IDLE;
    else
      c_state <= n_state;
  end


  always @ * begin
    case (c_state)
      IDLE              :   n_state = INIT_STATE;


      INIT_STATE        :   begin
        if (init_done == 1'b1)
          n_state = REFRESH_STATE;
        else
          n_state = INIT_STATE;
      end


      REFRESH_STATE     :   begin
        if (refresh_done == 1'b1)
          n_state = NO_BUSY;
        else
          n_state = REFRESH_STATE;
      end


      NO_BUSY           :   begin
        if (refresh_req == 1'b1)
          n_state = REFRESH_STATE;
        else
          if (wren == 1'b1)
            n_state = WR_STATE;
          else
            if (rden == 1'b1)
              n_state = RD_STATE;
            else
              n_state = NO_BUSY;
      end


      WR_STATE          :   begin
        if (wr_done == 1'b1)
          n_state = NO_BUSY;
        else
          n_state = WR_STATE;
      end


      RD_STATE          :   begin
        if (rd_done == 1'b1)
          n_state = NO_BUSY;
        else
          n_state = RD_STATE;
      end


      default           :   n_state = IDLE;
    endcase
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      busy <= 1'b1;
    else
      if (c_state == NO_BUSY && wren == 1'b0 && rden == 1'b0 && refresh_req == 1'b0)
        busy <= rd_en | wr_en;
      else
        busy <= 1'b1;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      init_en <= 1'b0;
    else
      if (c_state == IDLE)
        init_en <= 1'b1;
      else
        init_en <= 1'b0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      time_en <= 1'b0;
    else
      if (c_state == INIT_STATE && init_done == 1'b1)
        time_en <= 1'b1;
      else
        time_en <= time_en;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      refresh_en <= 1'b0;
    else
      if (c_state == INIT_STATE && init_done == 1'b1)
        refresh_en <= 1'b1;
      else
        if (c_state == NO_BUSY && refresh_req == 1'b1)
          refresh_en <= 1'b1;
        else
          refresh_en <= 1'b0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      req_clr <= 1'b0;
    else
      if (c_state == NO_BUSY && refresh_req == 1'b1)
        req_clr <= 1'b1;
      else
        req_clr <= 1'b0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      write_en <= 1'b0;
    else
      if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b1)
        write_en <= 1'b1;
     else
        write_en <= 1'b0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      out_en <= 1'b0;
    else
      if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b1)
        out_en <= 1'b1;
     else
        if (c_state == WR_STATE && wr_done == 1'b1)
          out_en <= 1'b0;
        else
          out_en <= out_en;
  end 


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      wr_addr <= 0;
    else
      if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b1)
        wr_addr <= addrr;
     else
        wr_addr <= wr_addr;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      wr_data <= 0;
    else
      if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b1)
        wr_data <= wdatar;
     else
        wr_data <= wr_data;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      wren_clr <= 1'b0;
    else
      if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b1)
        wren_clr <= 1'b1;
     else
        wren_clr <= 1'b0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rden_clr <= 1'b0;
    else
      if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b0 && rden == 1'b1)
        rden_clr <= 1'b1;
     else
        rden_clr <= 1'b0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      read_en <= 1'b0;
    else
      if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b0 && rden == 1'b1)
        read_en <= 1'b1;
     else
        read_en <= 1'b0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rd_addr <= 0;
    else
      if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b0 && rden == 1'b1)
        rd_addr <= addrr;
     else
        rd_addr <= rd_addr;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rdata <= 32'd0;
    else
      if (c_state == RD_STATE && rd_done == 1'b1)
        rdata <= rd_data;
      else
        rdata <= rdata;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rd_valid <= 1'b0;
    else
      if (c_state == RD_STATE && rd_done == 1'b1)
        rd_valid <= 1'b1;
      else
        rd_valid <= 1'b0;
  end 


  always @ (posedge clk, negedge rst_n)  begin
    if (rst_n == 1'b0)
      mux_sel <= 2'b00;
    else
      case (c_state)
        IDLE        :       mux_sel <= 2'b00;
        INIT_STATE  :       begin
          if (init_done == 1'b1)
            mux_sel <= 2'b01;
          else  
            mux_sel <= mux_sel;
        end
        REFRESH_STATE:      mux_sel <= mux_sel;
        NO_BUSY     :       begin
          if (refresh_req == 1'b1)
            mux_sel <= 2'b01;
          else
            if (wren == 1'b1)
              mux_sel <= 2'b10;
            else
              if (rden == 1'b1)
                mux_sel <= 2'b11;
              else
                mux_sel <= mux_sel;
        end
        RD_STATE    :   mux_sel <= mux_sel;
        WR_STATE    :   mux_sel <= mux_sel;


        default     :   mux_sel <= 2'b00;
      endcase
  end


endmodule

 

为了防止在进行刷新的起始部分丢失读写命令,所以在设计时,加入了缓存结构,只要有读写命令时,都会进行保存。在读写执行时,才会清除此命令。

RTL仿真

为了能够仿真此设计,需要用到SDR SDRAM的仿真模型。仿真模型在msim的sdr_sim_module中,将其修改为行线为13bit,列为9bit,每个bank有4194304个存储空间。

逻辑分析仪

在仿真时,在第二个bank,第五行,第10列,写入一个随机值。然后读取出来。

仿真代码为:

 

`timescale 1ns/1ps


module sdr_drive_tb;


  reg                     clk;
  reg                     rst_n;


  wire                    sys_clk;
  wire                    sys_rst_n;


  wire                    sdr_busy;
  reg                     wr_en;
  reg                     rd_en;
  reg       [23:0]        addr;
  reg       [31:0]        wdata;
  wire      [31:0]        rdata;
  wire                    rd_valid;


  wire                    sdr_clk;
  wire                    sdr_cke;
  wire                    sdr_cs_n;
  wire                    sdr_ras_n;
  wire                    sdr_cas_n;
  wire                    sdr_we_n;
  wire      [15:0]        sdr_dq;
  wire      [1:0]         sdr_bank;
  wire      [1:0]         sdr_dqm;
  wire      [12:0]        sdr_addr;


  sdr_drive sdr_drive_inst(


      .clk                  (clk),
      .rst_n                (rst_n),


      .sys_clk              (sys_clk),
      .sys_rst_n            (sys_rst_n),


    //  local
      .sdr_busy             (sdr_busy),
      .wr_en                (wr_en),
      .rd_en                (rd_en),
      .addr                 (addr),
      .wdata                (wdata),
      .rdata                (rdata),
      .rd_valid             (rd_valid),


    //  sdr
      .sdr_clk              (sdr_clk),
      .sdr_cke              (sdr_cke),
      .sdr_cs_n             (sdr_cs_n),
      .sdr_ras_n            (sdr_ras_n),
      .sdr_cas_n            (sdr_cas_n),
      .sdr_we_n             (sdr_we_n),
      .sdr_bank             (sdr_bank),
      .sdr_addr             (sdr_addr),
      .sdr_dqm              (sdr_dqm),
      .sdr_dq               (sdr_dq)
    );


  mt48lc32m16a2 mt48lc32m16a2_inst(
      .Dq                   (sdr_dq), 
      .Addr                 (sdr_addr), 
      .Ba                   (sdr_bank), 
      .Clk                  (sdr_clk), 
      .Cke                  (sdr_cke), 
      .Cs_n                 (sdr_cs_n), 
      .Ras_n                (sdr_ras_n), 
      .Cas_n                (sdr_cas_n), 
      .We_n                 (sdr_we_n), 
      .Dqm                  (sdr_dqm)
    );


  initial clk = 1'b0;
  always # 10 clk = ~clk;


  initial begin
    rst_n = 1'b0;
    wr_en = 1'b0;
    rd_en = 1'b0;
    addr = {2'b01, 13'd5,9'd10};
    wdata = 32'd0;
    # 201
    rst_n = 1'b1;
    @ (negedge sdr_busy);
    @ (posedge sys_clk);
    # 2;
    wr_en = 1'b1;
    wdata = $random;
    @ (posedge sys_clk);
    # 2;
    wr_en = 1'b0;
    # 2000;
    @ (negedge sdr_busy);
    @ (posedge sys_clk);
    # 2;
    rd_en = 1'b1;
    @ (posedge sys_clk);
    # 2;
    rd_en = 1'b0;
    # 2000;
    $stop;
  end


endmodule

 

这设置激励时,将tb文件和仿真模型文件同时加入添加文件中。

逻辑分析仪

在modelsim的报告界面会显示出具体的配置信息以及读写信息。

逻辑分析仪

从打印的报告中可以看出,在初始化时,列选通潜伏期为2,突发长度为2。在后续的读写时,在指定的位置,写入了13604,后续的一个位置为4629;在读出时,也正确的读出了数据。

报告打印出写入数据,即认为写入成功;报告打印出读出数据,只能证明控制器将数据读出,并不表示控制器能把数据接收到。

逻辑分析仪

通过控制输出的rdata以及对应的rd_valid信号,确定读出成功。在rdata中显示为16进制,16进制的1215为十进制的4629;16进制的3524的为十进制的13604。证明读数据接收正确。

板级测试

编写控制器的上游模块(sdr_drive_test_crtl),控制写入和读出。在固定的地址中addr = {2'b01, 13'd128, 9'd20},写入一个固定的数字wdata = 32'h5a5aa5a5,然后读出,进行验证。

读者在进行验证时,可以采样其他的地址或者数据进行验证,且可以进行多次尝试,保证设计正确。

该模块采用状态机设计实现。

逻辑分析仪

设计代码为:

 

`include "../rtl/sdr_drive_head.v"


module sdr_drive_test_ctrl (


  input     wire                                    clk,
  input     wire                                    rst_n,


  input     wire                                    sdr_busy,
  output    reg                                     wr_en,
  output    reg                                     rd_en,
  output    wire      [31:0]                        wdata,
  input     wire                                    rd_valid,
  input     wire      [31:0]                        rdata,
  output    wire      [`ADDR_WIDTH - 1 : 0]         addr
);


  localparam          IDLE        =   4'b0001;
  localparam          WR_STATE    =   4'b0010;
  localparam          RD_STATE    =   4'b0100;
  localparam          TEST_DONE   =   4'b1000;


  reg                 [3:0]         c_state;
  reg                 [3:0]         n_state;


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      c_state <= IDLE;
    else
      c_state <= n_state;
  end


  always @ * begin
    case (c_state)
      IDLE          :   begin
        if (sdr_busy == 1'b0)
          n_state = WR_STATE;
        else
          n_state = IDLE;
      end


      WR_STATE      :   begin
        if (sdr_busy == 1'b0)
          n_state = RD_STATE;
        else
          n_state = WR_STATE;
      end


      RD_STATE      :   begin
        if (rd_valid == 1'b1 && rdata == 32'h5a5aa5a5)
          n_state = TEST_DONE;
        else
          n_state = RD_STATE;
      end


      TEST_DONE     :   n_state = TEST_DONE;




      default       :   n_state = IDLE;
    endcase
  end


  assign wdata = 32'h5a5aa5a5;
  assign addr = {2'b01, 13'd128, 9'd20};


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      wr_en <= 1'b0;
    else
      if (c_state == IDLE && sdr_busy == 1'b0)
        wr_en <= 1'b1;
      else
        wr_en <= 1'b0;
  end


  always @ (posedge clk, negedge rst_n) begin
    if (rst_n == 1'b0)
      rd_en <= 1'b0;
    else
      if (c_state == WR_STATE && sdr_busy == 1'b0)
        rd_en <= 1'b1;
      else
        rd_en <= 1'b0;
  end


endmodule

 

编写测试顶层,模块命名为sdr_drive_test,并且设置为顶层。

此模块负责例化sdr_drive和sdr_drive_test_ctrl,完成连接功能,以此测试。

代码为:

 

`include "../rtl/sdr_drive_head.v"


module sdr_drive_test (


  input     wire                                    clk,
  input     wire                                    rst_n,


//  sdr
  output    wire                                    sdr_clk,
  output    wire                                    sdr_cke,
  output    wire                                    sdr_cs_n,
  output    wire                                    sdr_ras_n,
  output    wire                                    sdr_cas_n,
  output    wire                                    sdr_we_n,
  output    wire      [1:0]                         sdr_bank,
  output    wire      [`SDR_ADDR_WIDTH - 1 : 0]     sdr_addr,
  output    wire      [1:0]                         sdr_dqm,
  inout     wire      [15:0]                        sdr_dq
);


  wire                                    sys_clk;
  wire                                    sys_rst_n;


//  local
  wire                                    sdr_busy;
  wire                                    wr_en;
  wire                                    rd_en;
  wire      [`ADDR_WIDTH - 1 : 0]         addr;
  wire      [31:0]                        wdata;
  wire      [31:0]                        rdata;
  wire                                    rd_valid;


  sdr_drive_test_ctrl sdr_drive_test_ctrl_inst(


      .clk                (sys_clk),
      .rst_n              (sys_rst_n),


      .sdr_busy           (sdr_busy),
      .wr_en              (wr_en),
      .rd_en              (rd_en),
      .wdata              (wdata),
      .rd_valid           (rd_valid),
      .rdata              (rdata),
      .addr               (addr)
    );


  sdr_drive sdr_drive_inst(


      .clk                (clk),
      .rst_n              (rst_n),


      .sys_clk            (sys_clk),
      .sys_rst_n          (sys_rst_n),


    //  local
      .sdr_busy           (sdr_busy),
      .wr_en              (wr_en),
      .rd_en              (rd_en),
      .addr               (addr),
      .wdata              (wdata),
      .rdata              (rdata),
      .rd_valid           (rd_valid),


    //  sdr
      .sdr_clk            (sdr_clk),
      .sdr_cke            (sdr_cke),
      .sdr_cs_n           (sdr_cs_n),
      .sdr_ras_n          (sdr_ras_n),
      .sdr_cas_n          (sdr_cas_n),
      .sdr_we_n           (sdr_we_n),
      .sdr_bank           (sdr_bank),
      .sdr_addr           (sdr_addr),
      .sdr_dqm            (sdr_dqm),
      .sdr_dq             (sdr_dq)
    );


endmodule

 

经过综合分析后,进行分配管脚。在分配管脚后,需要将双功能管脚中的NCEO设置为普通用户IO。如果不设置,将会出现如下错误:

逻辑分析仪

右击器件名称,选择DEVICE。

逻辑分析仪

选择device and pin option。

逻辑分析仪

选择dual – purpose pins。

逻辑分析仪

将nceo设置为 use as regular IO。

逻辑分析仪

点击OK,进行编译即可。

连接上开发板,启动逻辑分析仪。

将采样时钟选择为,sys_clk(PLL的c0)。采样深度选择为1K。

逻辑分析仪

添加观测信号如下,将wr_en的上升沿设置为触发条件。

逻辑分析仪

经过保存,重新形成配置文件后,进行下板测试。

下板后,按下复位。等待波形触发。

逻辑分析仪

通过逻辑分析仪,就可以看出可以正确的写入和读出数据。

读者也可以进行尝试一次性写入多个数据,然后进行读出,进行验证设计的正确性。







审核编辑:刘清

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分