随机访问存储器(RAM)分为静态RAM(SRAM)和动态RAM(DRAM)。由于动态存储器存储单元的结构非常简单,所以它能达到的集成度远高于静态存储器。但是动态存储器的存取速度不如静态存储器快。
RAM的动态存储单元是利用电容可以存储电荷的原理制成的。由于存储单元的机构能够做得很简单,所以在大容量、高集成度的RAM中得到了普遍的应用。但是由于电容的容量很小,而漏电流又不可能绝对等于零,所以电荷保存的时间有限。为了及时补充漏掉的电荷以避免存储的信号丢失,必须定时地给电容补充电荷,通常将这种操作称为刷新。
行列地址线被选中后,数据线(data_bit)直接和电容相连接。当写入时,数据线给电容充放电;读取时,电容将数据线拉高或者置低。
SDRAM 的全称即同步动态随机存储器(Synchronous Dynamic Random Access Memory);这里的同步是指其时钟频率与对应控制器的系统时钟频率相同,并且内部命令的发送与数据传输都是以该时钟为基准;动态是指存储阵列需要不断的刷新来保证数据不丢失。
SDR SDRAM中的SDR是指单数据速率,即每一根数据线上,每个时钟只传输一个bit的数据。SDR SDRAM的时钟频率可以达到100MHz以上,按照100MHz的速率计算,一片16位数据宽度的SDR SDRAM的读写数据带宽可以达到1.6Gbit/s。
SANXIN – B01的开发板上有一个容量为256Mbit(16M x 16bit)的SDR SDRAM(H57V2562GTR)。其内部存储时,分为了4个独立的区域(BANK),每个bank为4Mx16bit的存储空间;每个bank在存储时,按照二维的方式进行存储,利用行列来进行确定,有8192行(13bit地址线),有512列(9bit地址线),8192 x 512为4M的存储量。
在进行指定某个地址时,共需要2位bank地址,13位行地址,9位列地址,合计共24位地址。但是在SDR SDRAM的指定某个地址时,行地址和列地址不是同时给出,SDR SDRAM采用行列地址线复用,所以地址线合计为2(bank 地址)+13(行、列地址复用)。
SDR SDRAM需要时钟端和时钟使能端。SDR SDRAM所有的操作都依靠于此时钟;当时钟使能端无效时,SDR SDRAM自动忽略时钟上升沿。
SDR SDRAM拥有四个命令控制线,分别为CS、RAS、CAS、WE。组成的命令表如下:
在写入数据时,有时会出现不想对某8bit进行写入,就可以采用DQM进行控制。
SDR SDRAM的内部机构为:
由于SDR SDRAM为DRAM,内部的存储都是靠电容进行保存数据,电容的保持数据的时间为64ms,SDR SDRAM每次只能够刷新一行,为了不丢失任何数据,所以要保证64ms内,将所有的行都要刷新一遍。
SDR SDRAM支持读写的长度为1、2、4、8和一行(整页)。
具体的SDR SDRAM的介绍可以查看手册。下面只介绍几个相对重要的时序图。
在SDR SDRAM正常使用之前,需要进行初始化。初始化的时序图如下:
在PRECHARGE时,A10为高,表示选中所有的bank;A10为低,表示选中BA0、BA1所指定的bank。初始化中,A10置高。
在LOAD MOOE REGISTER中,采用地址线进行配置模式寄存器。说明如下:
在模式配置中,利用CL(CAS Latency)表示列选通潜伏期,利用BL(Burst Length)表示突发长度。
SDR SDRAM中有内部的刷新控制器和刷新的行计数器,外部控制器只需要保证在64ms之内进行8192次刷新即可。
在进行PRECHARGE时,A10要为高电平。
SDR SDRAM中,我们可以在任意位置进行写入。写入的时序图如下:
SDR SDRAM中,我们可以在任意位置进行读出。读出的时序图如下:
在各个时序中的时序参数如下:
设计要求
设计一个突发长度为2,列选通潜伏期为2的SDR SDRAM的控制器。
设计分析
该控制器共有四部分功能,初始化、刷新、写和读。四部分的执行控制采用一个模块来控制。
SDR SDRAM必须要进行初始化,初始化只用执行一次。然后启动一个计时器,等计时器达到后,进行刷新。在刷新的间隔中,根据读写的要求进行读写。
四个模块都会对SDR SDRAM的命令线和地址线进行控制,所以输出时,采用多路选择器对齐进行选择输出。
四个模块按照对应的时序图进行编写代码即可。
架构设计和信号说明
该控制器命名为sdr_drive。
pll_sdr(锁相环模块):产生驱动所需要的100MHz的时钟(0度相位)、SDR SDRAM所需要的100MHz的时钟(270度相位)、以及PLL锁定信号当作系统复位使用。
timer(刷新计时器):当启动计时器后,开始计时,当计时到规定时间后,输出刷新请求,计数器直接清零计数计数。当控制器响应后,输出清除信号后,刷新请求拉低。
refresh(刷新模块)、init(初始化模块)、sdr_write(写模块)、sdr_read(读模块):当启动模块后,按照规定的时序进行输出即可,然后输出完成信号。
sdr_ctrl(控制模块):控制各个模块协调工作。
mux4_1(四选一多路选择器模块):选择对应的bus总线作为输出。
*_bus的组成为:高四位为sdr_cs_n、sdr_ras_n、sdr_cas_n、sdr_we_n。然后是bank的两位,后续为13位的sdr_addr。
sdr_drive_head声明
将驱动中用到各种参数定义在该文件中。
`define SDR_ADDR_WIDTH 13 `define SDR_COL_ADDR_WIDTH 9 `define SDR_REFRESH_TIME 64_000_000 `define ADDR_WIDTH 2 + `SDR_ADDR_WIDTH + `SDR_COL_ADDR_WIDTH `define BUS_WIDTH 4 + 2 + `SDR_ADDR_WIDTH `define CMD_INH 4'b1000 `define NOP 4'b0111 `define ACT 4'b0011 `define RD 4'b0101 `define WR 4'b0100 `define BT 4'b0110 `define PREC 4'b0010 `define REFR 4'b0001 `define LMR 4'b0000 `define PU_DELAY 20_000 `define Trp 3 `define Trfc 7 `define Tmrd 3 `define Trcd 3 `define Twr 3 `define Tcl 2 `define CODE 13'b000_0_00_010_0_001 `define REFRESH_TIME (`SDR_REFRESH_TIME/(2**`SDR_ADDR_WIDTH))/10
pll_sdr设计实现
该模块为IP core,输出0相位的100MHz(系统时钟)和270相位的100MHz(SDR的时钟)。系统设计中,信号在上升沿输出;对于外部器件(相位调整为270),能够较好的满足建立和保持时间。
init设计实现
该模块负责将SDR SDRAM进行初始化。上电延迟(PU_DELAY)设置为200us;预充电时间(Trp)设置为3个时钟周期(30ns);自刷新时间(Trfc)设置为7个时钟周期(70ns);模式寄存器应用时间(Tmrd)设置为3个时钟周期(30ns);突发长度为2;列选通潜伏期为3。
按照对应的初始化的时序图,做出如下设计。
本模块采用状态机的方式设计实现。
设计代码为:
`include "../rtl/sdr_drive_head.v" module init ( input wire clk, input wire rst_n, input wire init_en, output reg init_done, output wire [`BUS_WIDTH - 1 : 0] init_bus ); localparam IDLE = 7'b000_0001; localparam PUD = 7'b000_0010; localparam PRECHARGE = 7'b000_0100; localparam AUTOREFR1 = 7'b000_1000; localparam AUTOREFR2 = 7'b001_0000; localparam LMR_STATE = 7'b010_0000; localparam INITDONE = 7'b100_0000; reg [6:0] c_state; reg [6:0] n_state; wire [1:0] sdr_bank; reg [3:0] sdr_cmd; reg [`SDR_ADDR_WIDTH - 1 : 0] sdr_addr; reg [14:0] cnt; assign sdr_bank = 2'b00; assign init_bus = {sdr_cmd,sdr_bank,sdr_addr}; always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) c_state <= IDLE; else c_state <= n_state; end always @ * begin case (c_state) IDLE : begin if (init_en == 1'b1) n_state = PUD; else n_state = IDLE; end PUD : begin if (cnt == `PU_DELAY - 1'b1) n_state = PRECHARGE; else n_state = PUD; end PRECHARGE : begin if (cnt == `Trp - 1'b1) n_state = AUTOREFR1; else n_state = PRECHARGE; end AUTOREFR1 : begin if (cnt == `Trfc - 1'b1) n_state = AUTOREFR2; else n_state = AUTOREFR1; end AUTOREFR2 : begin if (cnt == `Trfc - 1'b1) n_state = LMR_STATE; else n_state = AUTOREFR2; end LMR_STATE : begin if (cnt == `Tmrd - 1'b1) n_state = INITDONE; else n_state = LMR_STATE; end INITDONE : begin n_state = INITDONE; end default : n_state = IDLE; endcase end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) sdr_cmd <= `NOP; else case (c_state) IDLE : sdr_cmd <= `NOP; PUD : begin if (cnt == `PU_DELAY - 1'b1) sdr_cmd <= `PREC; else sdr_cmd <= `NOP; end PRECHARGE : begin if (cnt == `Trp - 1'b1) sdr_cmd <= `REFR; else sdr_cmd <= `NOP; end AUTOREFR1 : begin if (cnt == `Trfc - 1'b1) sdr_cmd <= `REFR; else sdr_cmd <= `NOP; end AUTOREFR2 : begin if (cnt == `Trfc - 1'b1) sdr_cmd <= `LMR; else sdr_cmd <= `NOP; end LMR_STATE : sdr_cmd <= `NOP; INITDONE : sdr_cmd <= `NOP; default : sdr_cmd <= `NOP; endcase end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) cnt <= 15'd0; else case (c_state) IDLE : cnt <= 16'd0; PUD : begin if (cnt < `PU_DELAY - 1'b1) cnt <= cnt + 1'b1; else cnt <= 16'd0; end PRECHARGE : begin if (cnt < `Trp - 1'b1) cnt <= cnt + 1'b1; else cnt <= 16'd0; end AUTOREFR1 : begin if (cnt < `Trfc - 1'b1) cnt <= cnt + 1'b1; else cnt <= 16'd0; end AUTOREFR2 : begin if (cnt < `Trfc - 1'b1) cnt <= cnt + 1'b1; else cnt <= 16'd0; end LMR_STATE : begin if (cnt < `Tmrd - 1'b1) cnt <= cnt + 1'b1; else cnt <= 16'd0; end INITDONE : cnt <= 16'd0; default : cnt <= 16'd0; endcase end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) init_done <= 1'b0; else if (c_state == LMR_STATE && cnt == `Tmrd - 1'b1) init_done <= 1'b1; else init_done <= 1'b0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) sdr_addr <= 0; else if (c_state == PUD && cnt == `PU_DELAY - 1'b1) sdr_addr[10] <= 1'b1; else if (c_state == AUTOREFR2 && cnt == `Trfc - 1'b1) sdr_addr <= `CODE; else sdr_addr <= 0; end endmodule
timer设计实现
SDR SDRAM内部构造为DRAM,需要不间断的刷新,要求64ms刷新一遍。每次刷新为一行,开发板上的SDR SDRAM共有8192行,平均需要7812.5ns刷新一次,我们选择7810刷新一次。
到达规定的刷新时间时,控制器有可能正在进行其他的操作。在设计时,达到时间后,发出刷新请求,当外部执行刷新后,将次请求清除。发出刷新请求的同时,计数器重新归零计数。
`include "../rtl/sdr_drive_head.v" module timer ( input wire clk, input wire rst_n, input wire time_en, input wire req_clr, output reg refresh_req ); reg [9:0] cnt; always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) cnt <= 10'd0; else if (time_en == 1'b1 && cnt < `REFRESH_TIME - 1'b1) cnt <= cnt + 1'b1; else cnt <= 10'd0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) refresh_req <= 1'b0; else if (cnt == `REFRESH_TIME - 1'b1) refresh_req <= 1'b1; else if (req_clr == 1'b1) refresh_req <= 1'b0; else refresh_req <= refresh_req; end endmodule
refresh设计实现
该模块负责刷新,按照对应的时序图进行控制即可。
该模块利用状态机的方式实现。状态转移图如下:
设计代码为:
`include "../rtl/sdr_drive_head.v" module refresh ( input wire clk, input wire rst_n, input wire refresh_en, output reg refresh_done, output wire [`BUS_WIDTH - 1 : 0] refresh_bus ); localparam IDLE = 5'b0_0001; localparam PRECHARGE = 5'b0_0010; localparam AUTOREFR1 = 5'b0_0100; localparam AUTOREFR2 = 5'b0_1000; localparam REFRDONE = 5'b1_0000; reg [4:0] c_state; reg [4:0] n_state; wire [1:0] sdr_bank; reg [3:0] sdr_cmd; reg [`SDR_ADDR_WIDTH - 1 : 0] sdr_addr; reg [3:0] cnt; assign sdr_bank = 2'b00; assign refresh_bus = {sdr_cmd,sdr_bank,sdr_addr}; always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) c_state <= IDLE; else c_state <= n_state; end always @ * begin case (c_state) IDLE : begin if (refresh_en == 1'b1) n_state = PRECHARGE; else n_state = IDLE; end PRECHARGE : begin if (cnt == `Trp - 1'b1) n_state = AUTOREFR1; else n_state = PRECHARGE; end AUTOREFR1 : begin if (cnt == `Trfc - 1'b1) n_state = AUTOREFR2; else n_state = AUTOREFR1; end AUTOREFR2 : begin if (cnt == `Trfc - 1'b1) n_state = REFRDONE; else n_state = AUTOREFR2; end REFRDONE : begin n_state = IDLE; end default : n_state = IDLE; endcase end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) sdr_cmd <= `NOP; else case (c_state) IDLE : begin if (refresh_en == 1'b1) sdr_cmd <= `PREC; else sdr_cmd <= `NOP; end PRECHARGE : begin if (cnt == `Trp - 1'b1) sdr_cmd <= `REFR; else sdr_cmd <= `NOP; end AUTOREFR1 : begin if (cnt == `Trfc - 1'b1) sdr_cmd <= `REFR; else sdr_cmd <= `NOP; end AUTOREFR2 : sdr_cmd <= `NOP; REFRDONE : sdr_cmd <= `NOP; default : sdr_cmd <= `NOP; endcase end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) cnt <= 4'd0; else case (c_state) IDLE : cnt <= 4'd0; PRECHARGE : begin if (cnt < `Trp - 1'b1) cnt <= cnt + 1'b1; else cnt <= 4'd0; end AUTOREFR1 : begin if (cnt < `Trfc - 1'b1) cnt <= cnt + 1'b1; else cnt <= 4'd0; end AUTOREFR2 : begin if (cnt < `Trfc - 1'b1) cnt <= cnt + 1'b1; else cnt <= 4'd0; end REFRDONE : cnt <= 4'd0; default : cnt <= 4'd0; endcase end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) refresh_done <= 1'b0; else if (c_state == AUTOREFR2 && cnt == `Trfc - 1'b1) refresh_done <= 1'b1; else refresh_done <= 1'b0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) sdr_addr <= 0; else if (c_state == IDLE && refresh_en == 1'b1) sdr_addr[10] <= 1'b1; else sdr_addr <= 0; end endmodule
sdr_write设计实现
该模块负责将外部的数据写入到规定的地址中去。在SDR SDRAM中,每操作(读写)一次,都会引起该存储位的漏电,每次结束时,可以进行预充电。SDR SDRAM提供了自动预充电的机制,在读写命令时,sdr_addr[10]=1,即可自动预充电。在设计时,应该要为自动预充电预留出足够的时间。
根据对应的写入时序图,利用状态机完成此设计。
设计代码如下:
`include "../rtl/sdr_drive_head.v" module sdr_write ( input wire clk, input wire rst_n, input wire write_en, input wire [`ADDR_WIDTH - 1 : 0] wr_addr, input wire [31:0] wr_data, output reg [15:0] odq, output wire [`BUS_WIDTH - 1 : 0] wr_bus, output reg wr_done ); localparam IDLE = 4'b0001; localparam ACT_STATE = 4'b0010; localparam WR1 = 4'b0100; localparam WR2 = 4'b1000; reg [3:0] c_state; reg [3:0] n_state; wire [1:0] sdr_bank; reg [3:0] sdr_cmd; reg [`SDR_ADDR_WIDTH - 1 : 0] sdr_addr; reg [14:0] cnt; assign sdr_bank = wr_addr[23:22]; assign wr_bus = {sdr_cmd,sdr_bank,sdr_addr}; always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) c_state <= IDLE; else c_state <= n_state; end always @ * begin case (c_state) IDLE : begin if (write_en == 1'b1) n_state = ACT_STATE; else n_state = IDLE; end ACT_STATE : begin if (cnt == `Trcd - 1'b1) n_state = WR1; else n_state = ACT_STATE; end WR1 : n_state = WR2; WR2 : begin if (cnt == `Twr + `Trp - 1'b1) n_state = IDLE; else n_state = WR2; end default : n_state = IDLE; endcase end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) sdr_cmd <= `NOP; else if (c_state == IDLE && write_en == 1'b1) sdr_cmd <= `ACT; else if (c_state == ACT_STATE && cnt == `Trcd - 1'b1) sdr_cmd <= `WR; else sdr_cmd <= `NOP; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) sdr_addr <= 0; else if (c_state == IDLE && write_en == 1'b1) sdr_addr <= wr_addr[21:9]; else if (c_state == ACT_STATE && cnt == `Trcd - 1'b1) begin sdr_addr[10] <= 1'b1; sdr_addr[8:0] <= wr_addr[8:0]; end else sdr_addr <= 0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) cnt <= 4'd0; else if (c_state == ACT_STATE && cnt < `Trcd - 1'b1) cnt <= cnt + 1'b1; else if (c_state == WR2 && cnt < `Twr + `Trp - 1'b1) cnt <= cnt + 1'b1; else cnt <= 4'd0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) odq <= 16'd0; else if (c_state == ACT_STATE && cnt == `Trcd - 1'b1) odq <= wr_data[15:0]; else if (c_state == WR1) odq <= wr_data[31:16]; else odq <= 16'd0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) wr_done <= 1'b0; else if (c_state == WR2 && cnt < `Twr + `Trp - 1'b1) wr_done <= 1'b1; else wr_done <= 1'b0; end endmodule
sdr_read设计实现
该模块负责从指定的地址中,将数据读出。
按照对应的读时序图即可实现功能,本模块采用状态机方式实现,状态转移图如下:
设计代码为:
module sdr_read ( input wire clk, input wire rst_n, input wire read_en, input wire [`ADDR_WIDTH - 1 : 0] rd_addr, input wire [15:0] sdr_dq, output reg [31:0] rd_data, output reg rd_done, output wire [`BUS_WIDTH - 1 : 0] rd_bus ); localparam IDLE = 5'b00001; localparam ACT_STATE = 5'b00010; localparam READ_STATE = 5'b00100; localparam RD1 = 5'b01000; localparam RD2 = 5'b10000; reg [4:0] c_state; reg [4:0] n_state; wire [1:0] sdr_bank; reg [3:0] sdr_cmd; reg [`SDR_ADDR_WIDTH - 1 : 0] sdr_addr; reg [3:0] cnt; assign sdr_bank = rd_addr[23:22]; assign rd_bus = {sdr_cmd,sdr_bank,sdr_addr}; always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) c_state <= IDLE; else c_state <= n_state; end always @ * begin case (c_state) IDLE : begin if (read_en == 1'b1) n_state = ACT_STATE; else n_state = IDLE; end ACT_STATE : begin if (cnt == `Trcd - 1'b1) n_state = READ_STATE; else n_state = ACT_STATE; end READ_STATE : begin if (cnt == `Tcl) n_state = RD1; else n_state = READ_STATE; end RD1 : n_state = RD2; RD2 : begin if (cnt == `Trp - 1'b1) n_state = IDLE; else n_state = RD2; end default : n_state = IDLE; endcase end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) sdr_cmd <= `NOP; else if (c_state == IDLE && read_en == 1'b1) sdr_cmd <= `ACT; else if (c_state == ACT_STATE && cnt == `Trcd - 1'b1) sdr_cmd <= `RD; else sdr_cmd <= `NOP; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) sdr_addr <= 0; else if (c_state == IDLE && read_en == 1'b1) sdr_addr <= rd_addr[21:9]; else if (c_state == ACT_STATE && cnt == `Trcd - 1'b1) begin sdr_addr[10] <= 1'b1; sdr_addr[8:0] <= rd_addr[8:0]; end else sdr_addr <= 0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) cnt <= 4'd0; else case (c_state) IDLE : cnt <= 4'd0; ACT_STATE : begin if (cnt < `Trcd - 1'b1) cnt <= cnt + 1'b1; else cnt <= 4'd0; end READ_STATE: begin if (cnt < `Tcl) cnt <= cnt + 1'b1; else cnt <= 4'd0; end RD1 : cnt <= 4'd0; RD2 : begin if (cnt < `Trp - 1'b1) cnt <= cnt + 1'b1; else cnt <= 4'd0; end default : cnt <= 4'd0; endcase end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) rd_data <= 32'd0; else if (c_state == READ_STATE && cnt == `Tcl) rd_data[15:0] <= sdr_dq; else if (c_state == RD1) rd_data[31:16] <= sdr_dq; else rd_data <= rd_data; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) rd_done <= 1'b0; else if (c_state == RD2 && cnt < `Trp - 1'b1) rd_done <= 1'b1; else rd_done <= 1'b0; end endmodule
mux4_1设计实现
该模块负责选择出对应的bus,然后将对应位作为输出即可。
设计代码为:
module mux4_1 ( input wire [`BUS_WIDTH - 1 : 0] init_bus, input wire [`BUS_WIDTH - 1 : 0] refresh_bus, input wire [`BUS_WIDTH - 1 : 0] wr_bus, input wire [`BUS_WIDTH - 1 : 0] rd_bus, input wire [1:0] mux_sel, output wire [1 : 0] sdr_bank, output wire [`ADDR_WIDTH - 1 : 0] sdr_addr, output wire sdr_cs_n, output wire sdr_ras_n, output wire sdr_cas_n, output wire sdr_we_n ); reg [`BUS_WIDTH - 1 : 0] sdr_bus; assign sdr_cs_n = sdr_bus[18]; assign sdr_ras_n = sdr_bus[17]; assign sdr_cas_n = sdr_bus[16]; assign sdr_we_n = sdr_bus[15]; assign sdr_bank = sdr_bus[14:13]; assign sdr_addr = sdr_bus[12:0]; always @ * begin case (mux_sel) 2'b00 : sdr_bus = init_bus; 2'b01 : sdr_bus = refresh_bus; 2'b10 : sdr_bus = wr_bus; 2'b11 : sdr_bus = rd_bus; default : sdr_bus = init_bus; endcase end endmodule
sdr_ctrl设计实现
该模块负责调度整个控制器,利用状态机实现。
设计代码为:
`include "../rtl/sdr_drive_head.v" module sdr_ctrl ( input wire clk, input wire rst_n, input wire wr_en, input wire rd_en, input wire [`ADDR_WIDTH - 1 : 0] addr, input wire [31:0] wdata, output reg [31:0] rdata, output reg rd_valid, output wire sdr_busy, output reg [1:0] mux_sel, output reg init_en, input wire init_done, output reg time_en, input wire refresh_req, output reg req_clr, output reg refresh_en, input wire refresh_done, output reg out_en, output reg write_en, output reg [`ADDR_WIDTH - 1 : 0] wr_addr, output reg [31:0] wr_data, input wire wr_done, output reg read_en, output reg [`ADDR_WIDTH - 1 : 0] rd_addr, input wire [31:0] rd_data, input wire rd_done ); localparam IDLE = 6'b000_001; localparam INIT_STATE = 6'b000_010; localparam REFRESH_STATE = 6'b000_100; localparam NO_BUSY = 6'b001_000; localparam WR_STATE = 6'b010_000; localparam RD_STATE = 6'b100_000; reg [5:0] c_state; reg [5:0] n_state; reg wren; reg wren_clr; reg rden; reg rden_clr; reg [`ADDR_WIDTH - 1 : 0] addrr; reg [31:0] wdatar; reg busy; assign sdr_busy = busy | rd_en | wr_en; always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) wren <= 1'b0; else if (wr_en == 1'b1) wren <= 1'b1; else if (wren_clr == 1'b1) wren <= 1'b0; else wren <= wren; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) rden <= 1'b0; else if (rd_en == 1'b1) rden <= 1'b1; else if (rden_clr == 1'b1) rden <= 1'b0; else rden <= rden; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) wdatar <= 32'd0; else if (wr_en == 1'b1) wdatar <= wdata; else wdatar <= wdatar; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) addrr <= 0; else if (wr_en == 1'b1 || rd_en == 1'b1) addrr <= addr; else addrr <= addrr; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) c_state <= IDLE; else c_state <= n_state; end always @ * begin case (c_state) IDLE : n_state = INIT_STATE; INIT_STATE : begin if (init_done == 1'b1) n_state = REFRESH_STATE; else n_state = INIT_STATE; end REFRESH_STATE : begin if (refresh_done == 1'b1) n_state = NO_BUSY; else n_state = REFRESH_STATE; end NO_BUSY : begin if (refresh_req == 1'b1) n_state = REFRESH_STATE; else if (wren == 1'b1) n_state = WR_STATE; else if (rden == 1'b1) n_state = RD_STATE; else n_state = NO_BUSY; end WR_STATE : begin if (wr_done == 1'b1) n_state = NO_BUSY; else n_state = WR_STATE; end RD_STATE : begin if (rd_done == 1'b1) n_state = NO_BUSY; else n_state = RD_STATE; end default : n_state = IDLE; endcase end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) busy <= 1'b1; else if (c_state == NO_BUSY && wren == 1'b0 && rden == 1'b0 && refresh_req == 1'b0) busy <= rd_en | wr_en; else busy <= 1'b1; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) init_en <= 1'b0; else if (c_state == IDLE) init_en <= 1'b1; else init_en <= 1'b0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) time_en <= 1'b0; else if (c_state == INIT_STATE && init_done == 1'b1) time_en <= 1'b1; else time_en <= time_en; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) refresh_en <= 1'b0; else if (c_state == INIT_STATE && init_done == 1'b1) refresh_en <= 1'b1; else if (c_state == NO_BUSY && refresh_req == 1'b1) refresh_en <= 1'b1; else refresh_en <= 1'b0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) req_clr <= 1'b0; else if (c_state == NO_BUSY && refresh_req == 1'b1) req_clr <= 1'b1; else req_clr <= 1'b0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) write_en <= 1'b0; else if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b1) write_en <= 1'b1; else write_en <= 1'b0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) out_en <= 1'b0; else if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b1) out_en <= 1'b1; else if (c_state == WR_STATE && wr_done == 1'b1) out_en <= 1'b0; else out_en <= out_en; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) wr_addr <= 0; else if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b1) wr_addr <= addrr; else wr_addr <= wr_addr; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) wr_data <= 0; else if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b1) wr_data <= wdatar; else wr_data <= wr_data; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) wren_clr <= 1'b0; else if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b1) wren_clr <= 1'b1; else wren_clr <= 1'b0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) rden_clr <= 1'b0; else if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b0 && rden == 1'b1) rden_clr <= 1'b1; else rden_clr <= 1'b0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) read_en <= 1'b0; else if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b0 && rden == 1'b1) read_en <= 1'b1; else read_en <= 1'b0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) rd_addr <= 0; else if (c_state == NO_BUSY && refresh_req == 1'b0 && wren == 1'b0 && rden == 1'b1) rd_addr <= addrr; else rd_addr <= rd_addr; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) rdata <= 32'd0; else if (c_state == RD_STATE && rd_done == 1'b1) rdata <= rd_data; else rdata <= rdata; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) rd_valid <= 1'b0; else if (c_state == RD_STATE && rd_done == 1'b1) rd_valid <= 1'b1; else rd_valid <= 1'b0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) mux_sel <= 2'b00; else case (c_state) IDLE : mux_sel <= 2'b00; INIT_STATE : begin if (init_done == 1'b1) mux_sel <= 2'b01; else mux_sel <= mux_sel; end REFRESH_STATE: mux_sel <= mux_sel; NO_BUSY : begin if (refresh_req == 1'b1) mux_sel <= 2'b01; else if (wren == 1'b1) mux_sel <= 2'b10; else if (rden == 1'b1) mux_sel <= 2'b11; else mux_sel <= mux_sel; end RD_STATE : mux_sel <= mux_sel; WR_STATE : mux_sel <= mux_sel; default : mux_sel <= 2'b00; endcase end endmodule
为了防止在进行刷新的起始部分丢失读写命令,所以在设计时,加入了缓存结构,只要有读写命令时,都会进行保存。在读写执行时,才会清除此命令。
RTL仿真
为了能够仿真此设计,需要用到SDR SDRAM的仿真模型。仿真模型在msim的sdr_sim_module中,将其修改为行线为13bit,列为9bit,每个bank有4194304个存储空间。
在仿真时,在第二个bank,第五行,第10列,写入一个随机值。然后读取出来。
仿真代码为:
`timescale 1ns/1ps module sdr_drive_tb; reg clk; reg rst_n; wire sys_clk; wire sys_rst_n; wire sdr_busy; reg wr_en; reg rd_en; reg [23:0] addr; reg [31:0] wdata; wire [31:0] rdata; wire rd_valid; wire sdr_clk; wire sdr_cke; wire sdr_cs_n; wire sdr_ras_n; wire sdr_cas_n; wire sdr_we_n; wire [15:0] sdr_dq; wire [1:0] sdr_bank; wire [1:0] sdr_dqm; wire [12:0] sdr_addr; sdr_drive sdr_drive_inst( .clk (clk), .rst_n (rst_n), .sys_clk (sys_clk), .sys_rst_n (sys_rst_n), // local .sdr_busy (sdr_busy), .wr_en (wr_en), .rd_en (rd_en), .addr (addr), .wdata (wdata), .rdata (rdata), .rd_valid (rd_valid), // sdr .sdr_clk (sdr_clk), .sdr_cke (sdr_cke), .sdr_cs_n (sdr_cs_n), .sdr_ras_n (sdr_ras_n), .sdr_cas_n (sdr_cas_n), .sdr_we_n (sdr_we_n), .sdr_bank (sdr_bank), .sdr_addr (sdr_addr), .sdr_dqm (sdr_dqm), .sdr_dq (sdr_dq) ); mt48lc32m16a2 mt48lc32m16a2_inst( .Dq (sdr_dq), .Addr (sdr_addr), .Ba (sdr_bank), .Clk (sdr_clk), .Cke (sdr_cke), .Cs_n (sdr_cs_n), .Ras_n (sdr_ras_n), .Cas_n (sdr_cas_n), .We_n (sdr_we_n), .Dqm (sdr_dqm) ); initial clk = 1'b0; always # 10 clk = ~clk; initial begin rst_n = 1'b0; wr_en = 1'b0; rd_en = 1'b0; addr = {2'b01, 13'd5,9'd10}; wdata = 32'd0; # 201 rst_n = 1'b1; @ (negedge sdr_busy); @ (posedge sys_clk); # 2; wr_en = 1'b1; wdata = $random; @ (posedge sys_clk); # 2; wr_en = 1'b0; # 2000; @ (negedge sdr_busy); @ (posedge sys_clk); # 2; rd_en = 1'b1; @ (posedge sys_clk); # 2; rd_en = 1'b0; # 2000; $stop; end endmodule
这设置激励时,将tb文件和仿真模型文件同时加入添加文件中。
在modelsim的报告界面会显示出具体的配置信息以及读写信息。
从打印的报告中可以看出,在初始化时,列选通潜伏期为2,突发长度为2。在后续的读写时,在指定的位置,写入了13604,后续的一个位置为4629;在读出时,也正确的读出了数据。
报告打印出写入数据,即认为写入成功;报告打印出读出数据,只能证明控制器将数据读出,并不表示控制器能把数据接收到。
通过控制输出的rdata以及对应的rd_valid信号,确定读出成功。在rdata中显示为16进制,16进制的1215为十进制的4629;16进制的3524的为十进制的13604。证明读数据接收正确。
板级测试
编写控制器的上游模块(sdr_drive_test_crtl),控制写入和读出。在固定的地址中addr = {2'b01, 13'd128, 9'd20},写入一个固定的数字wdata = 32'h5a5aa5a5,然后读出,进行验证。
读者在进行验证时,可以采样其他的地址或者数据进行验证,且可以进行多次尝试,保证设计正确。
该模块采用状态机设计实现。
设计代码为:
`include "../rtl/sdr_drive_head.v" module sdr_drive_test_ctrl ( input wire clk, input wire rst_n, input wire sdr_busy, output reg wr_en, output reg rd_en, output wire [31:0] wdata, input wire rd_valid, input wire [31:0] rdata, output wire [`ADDR_WIDTH - 1 : 0] addr ); localparam IDLE = 4'b0001; localparam WR_STATE = 4'b0010; localparam RD_STATE = 4'b0100; localparam TEST_DONE = 4'b1000; reg [3:0] c_state; reg [3:0] n_state; always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) c_state <= IDLE; else c_state <= n_state; end always @ * begin case (c_state) IDLE : begin if (sdr_busy == 1'b0) n_state = WR_STATE; else n_state = IDLE; end WR_STATE : begin if (sdr_busy == 1'b0) n_state = RD_STATE; else n_state = WR_STATE; end RD_STATE : begin if (rd_valid == 1'b1 && rdata == 32'h5a5aa5a5) n_state = TEST_DONE; else n_state = RD_STATE; end TEST_DONE : n_state = TEST_DONE; default : n_state = IDLE; endcase end assign wdata = 32'h5a5aa5a5; assign addr = {2'b01, 13'd128, 9'd20}; always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) wr_en <= 1'b0; else if (c_state == IDLE && sdr_busy == 1'b0) wr_en <= 1'b1; else wr_en <= 1'b0; end always @ (posedge clk, negedge rst_n) begin if (rst_n == 1'b0) rd_en <= 1'b0; else if (c_state == WR_STATE && sdr_busy == 1'b0) rd_en <= 1'b1; else rd_en <= 1'b0; end endmodule
编写测试顶层,模块命名为sdr_drive_test,并且设置为顶层。
此模块负责例化sdr_drive和sdr_drive_test_ctrl,完成连接功能,以此测试。
代码为:
`include "../rtl/sdr_drive_head.v" module sdr_drive_test ( input wire clk, input wire rst_n, // sdr output wire sdr_clk, output wire sdr_cke, output wire sdr_cs_n, output wire sdr_ras_n, output wire sdr_cas_n, output wire sdr_we_n, output wire [1:0] sdr_bank, output wire [`SDR_ADDR_WIDTH - 1 : 0] sdr_addr, output wire [1:0] sdr_dqm, inout wire [15:0] sdr_dq ); wire sys_clk; wire sys_rst_n; // local wire sdr_busy; wire wr_en; wire rd_en; wire [`ADDR_WIDTH - 1 : 0] addr; wire [31:0] wdata; wire [31:0] rdata; wire rd_valid; sdr_drive_test_ctrl sdr_drive_test_ctrl_inst( .clk (sys_clk), .rst_n (sys_rst_n), .sdr_busy (sdr_busy), .wr_en (wr_en), .rd_en (rd_en), .wdata (wdata), .rd_valid (rd_valid), .rdata (rdata), .addr (addr) ); sdr_drive sdr_drive_inst( .clk (clk), .rst_n (rst_n), .sys_clk (sys_clk), .sys_rst_n (sys_rst_n), // local .sdr_busy (sdr_busy), .wr_en (wr_en), .rd_en (rd_en), .addr (addr), .wdata (wdata), .rdata (rdata), .rd_valid (rd_valid), // sdr .sdr_clk (sdr_clk), .sdr_cke (sdr_cke), .sdr_cs_n (sdr_cs_n), .sdr_ras_n (sdr_ras_n), .sdr_cas_n (sdr_cas_n), .sdr_we_n (sdr_we_n), .sdr_bank (sdr_bank), .sdr_addr (sdr_addr), .sdr_dqm (sdr_dqm), .sdr_dq (sdr_dq) ); endmodule
经过综合分析后,进行分配管脚。在分配管脚后,需要将双功能管脚中的NCEO设置为普通用户IO。如果不设置,将会出现如下错误:
右击器件名称,选择DEVICE。
选择device and pin option。
选择dual – purpose pins。
将nceo设置为 use as regular IO。
点击OK,进行编译即可。
连接上开发板,启动逻辑分析仪。
将采样时钟选择为,sys_clk(PLL的c0)。采样深度选择为1K。
添加观测信号如下,将wr_en的上升沿设置为触发条件。
经过保存,重新形成配置文件后,进行下板测试。
下板后,按下复位。等待波形触发。
通过逻辑分析仪,就可以看出可以正确的写入和读出数据。
读者也可以进行尝试一次性写入多个数据,然后进行读出,进行验证设计的正确性。
审核编辑:刘清
全部0条评论
快来发表一下你的评论吧 !