基于SoPC的边缘图像连通区域标记的算法

模拟技术

2414人已加入

描述

  本文所标记的图像是经过边缘检测得的二值边缘图像。相对于原始图像(或其二值图像),边缘图像保留了轮廓信息,目标点数大大减小,适合使用区域生长标记算法。但是,现有的区域生长标记算法一方面需要对每一个目标点进行N×N窗口搜索,搜索效率低并会出现同一像素重复扫描现象;另一方面,如果搜索窗口较小(如最常用的3×3,也称8邻域),虽然干扰少,但是同一个连通区很容易被标记成若干个不同的连通区;而如果增大搜索窗口(如7×7),虽然得到的标记图像连通性好,但是会引入较多干扰点。

  1 基于生长算法的区域标记

  像素P的上、下、左、右、左上、左下、右上、右下的像素集合为像素P的8邻域,邻域内所有目标点同属于一个连通区。通常采用8邻域生长法则进行连通区域标记。

  1.1 8邻域区域生长算法

  设边缘图像的背景像素为255,目标像素为0,对其进行8邻域区域生长标记的步骤如下:

  (1)按从上到下、从左到右的顺序扫描图像,遇到目标像素P时,标记为新的标记值L;

  (2)以P为种子点,将其8邻域内的目标像素标记为L;

  (3)将所有与L像素8邻域内相邻的目标像素标记为L,直到该连通区域标记完毕;

  (4)继续按顺序扫描图像,重复前三步,直到图像中所有目标像素都标记完毕。

  每个连通区域的起始点是按顺序扫描整个图像得到的,而各个连通区域的标记过程是递归调用生长函数的过程。生长函数依次扫描目标点的8邻域,若遇到新的目标点,则将当前目标点的处理过程压栈,转而扫描新目标点的8邻域,如此不断地将目标点压栈。当某一目标点的8邻域内没有新的目标点,则将其弹栈,当所有目标点都弹栈完毕,则该连通区域标记完毕。

  1.2 邻域重复扫描问题

  在图1中,P0的8邻域和P1、P2、P3、P4的8邻域有4个像素的重叠,与P5、P6、P7、P8的8邻域有2个像素的重叠。按上述的8邻域区域生长算法,当P0与P4均为目标点时(设递归过程由P0 向P4传递),P0、P1、P8、P3、P7这5个像素点被扫描了2次;当P0与P5均为目标点时(设递归过程由P0 向P5传递),P0、P1、P2这3个像素点被扫描了2次。

  1.3 8方向邻域生长算法

  8方向邻域生长算法的思路是:目标点A和目标点B相邻,从A到B有8个方向,当按某个方向从A传递到B的8邻域搜索时,只搜索B的8邻域中未被A的8邻域覆盖的部分。例如,图1中从P0传递到P4的8邻域搜索时,只搜索P18、P04、P37;从P0传递到P5的8邻域搜索时,只搜索P05、P25、P01、P15、P02。即:

  

sopc

 

  

sopc

 

  8方向邻域生长算法由9个生长函数组成。对于连通区域的起点,必须搜索8个方向,此时调用主生长函数。在目标点传递的过程中,按其传递方向,按式(1)调用相应的生长函数搜索邻域点。区域标记从起点调用主生长函数开始,过程是8个生长函数互相调用,最后这些函数都返回时,区域标记完毕。

  该方法充分利用了从目标点A到目标点B的方向信息,从而在搜索B的邻域时,搜索个数降低为原来的3/8或5/8,平均效率提高了50%。

  1.4 边缘端点与区域合并

  仅用8邻域搜索连通区,往往得到的连通区域并不完整,连通性不好。图2(a)中,右半部分是圆形左下局部放大图。当按逆时针搜索到图中圆圈标识的“11”时,在其8邻域内没有新的目标点,因此也就和区域“15”断开了。当搜索到某个目标点时,其8邻域内没有新的目标点,则该点就是边缘的“末端”。一个区域可能有多个末端。

  在图2(b)中,右半部分是“米”字中心局部放大图。图中圆圈标识的“4”点,其8邻域内有新的目标点(左下点),但最近的“3”点并不在其邻域内,因此两个连通区断开。对于单个像素宽的边缘图像,其走向基本一致;而走向改变较大的点,就是图形的“拐点”,此时容易出现区域断开的现象。

  

sopc

 

  

sopc

 

  图1中,假设三个目标点的传递顺序是P0到P5,P5再到P02,则P5就是走向拐点。

  要改善连通性,可以增大搜索范围,如增大到7×7范围。这样虽然在一定程度上改善了连通性,但是会引入更多的干扰点。而本文的思路是:首先按照上述8方向邻域生长算法搜索连通区域,同时记录边缘“端点”,然后通过比较各个区域的端点,将端点较近的两个区域合并。结合前文的分析,本文认为边缘端点包括3类:区域起点;边缘末端;边缘拐点。这样得到的端点个数少,包含了绝大部分的“断点”。通过不断比较各个区域的端点,相近则将区域合并,最终得到合并后的标记图像。

  该方法实质上是在小尺度内搜索连通区,并利用得到的边缘端点在大尺度内进行区域合并,既不引入更多的杂点,又改善了标记图像的连通性,并在保证区域合并正确率的同时,提高了合并效率。

  2 区域标记及合并的SoPC实现

  本文以FPGA为核心,利用SoPC技术,实现了对320×240图像的8方向生长连通区域标记。系统使用FPGA逻辑硬件进行边缘检测[3],使用NiosII软核处理器进行连通区域标记,用Avalon总线将两者结合起来,实现了硬件加速,软硬件协同工作,既提高了实时性又保证了灵活性。

  2.1 SoPC系统的结构设计

  系统结构图如图3所示,主要模块的功能简述如下:

  (1)NiosII CPU模块。该模块是整个系统运算和调度的中心,完成系统工作流程的控制;图像处理中区域标记和区域合并算法的实现;图形用户接口(GUI)的实现。

  (2)Image模块。图像采集部分负责按照320×240大小采集摄像头的数据,由DMA控制器通过Avalon总线将原始图像数据存储到DDR SDRAM中。边缘检测部分同步地将原始图像数据边缘化,生成边缘图像数据,并通过DMA控制器和Avalon总线存储到DDR SDRAM中。

  (3)Display模块。负责驱动LCD液晶显示屏显示原始图像、标记图像以及处理信息。

  

sopc

 

  2.2 区域标记及合并的算法实现

  图像处理过程分为连通区域标记、区域合并和区域排序三步。

  (1)连通区域标记:按照改进后的8方向邻域生长算法进行连通区域标记,为每个连通区分配一个链表数组元素,用链表记录该连通区的目标点和端点。

  (2)区域合并:逐个比较任意两个连通区域的端点链表,在大尺度范围内(本文采用9×9范围),若其中有相邻的端点,则合并这两个连通区。

  (3)区域排序:按照目标点的个数,从大到小对合并后的连通区域排序,取前N个目标点数大于X的连通区域作为后续特征提取的对象(本文N的最大取值为10,X取值20),其余的视为干扰去掉。取形状较大的N个连通区进行下一步的特征提取,可以节省处理时间。

  3 实验结果及分析

  本文使用Altera公司的高性价比CycloneIII系列的FPGA EP3C25F324C8。SoPC系统共用逻辑单元8916/24624(36%),寄存器5 415个,引脚101个,片内SRAM位数421 248/608 256(69%),内置乘法器4个,PLL锁相环1个。系统时钟为100 MHz,NiosII软核处理器的性能为113 DMIPS。

  实验结果如图4所示。图4(a)为实验用开发板和摄像头,图4(b)、(c)、(d)是不同图像在LCD液晶屏上显示的实验结果。显示分为三部分:左侧上部为原始灰度图像,大小为320×240;左侧下部为标记图像(不同区域由不同颜色显示),大小为320×240;右侧为处理信息,大小为480×480。处理信息包括:Connection Num为连通区域个数;Merge Num为合并后的区域数;Region Num为排序后的区域数;Process Time为图像处理时间,单位为ms。

  

 

  实验结果表明,本文算法得出的标记图像结果正确、边缘清晰、去掉了杂点、提高了区域的连通性。在SoPC系统上实现时,对复杂图像的处理速度约30帧/s,满足了实时性要求。

  实验结果表明了算法的有效性和实时性。基于SoPC技术的图像处理系统,软硬件协同工作,提高了系统的并行性和灵活性,便携性好,成本低。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分