电子说
程瑜
安科瑞电气股份有限公司 上海嘉定201801
摘要:基于国家相关规范对建筑中设置电气火灾监控系统的要求,结合目前某地方城市地铁供配电方案特点,从电气火灾探测器的选择及位置设置、电气火灾监控设备的要求及系统传输方案等方面,介绍了地铁车站电气火灾监控系统设置方案。建议将分离式探测器设置在变电所0.4kv馈线回路处,并采用故障点少、后期维护方便的无线传输方案。
关键词:电气火灾监控系统;地铁供配电方案;电气火灾探测器;电气火灾监控 设备;系统传输
0.引言
随着国家综合实力的不断提高,地铁有效缓解了城市地面交通压力,但存在较大的安全隐患,*多且危害*大的事故就是火灾,其中由电气原因引起的火灾占37%。因此,应对电气火灾进行有效的防范。
电气火灾监控系统属于先期预报警系统,是针对火灾的早期预防、消除火灾隐患而设置的。国家有关部门相继制订或修改有关标准规范,对建筑中设置电气火灾监控系统提出了更明确的要求。GB 50116-2013《火灾自动报警系统设计规范》第3.1.1条确定:“地下铁道、车站属*级保护对象。”DBJ/T 15-77-2010《电气火灾监控系统设计、施工及验收规范》第3.2.1条规定:“GB 50116—2013中保护对象为*级、*级的建筑应设置电气火灾监控系统。”本文主要分析了广州地铁车站电气火灾监控系统设置方案。
1.电气火灾监控系统原理
电气火灾监控系统由电气火灾监控探测器(剩余电流式电气火灾监控器、测温式电气火灾探测器)和电气火灾监控设备两部分组成。
1.1 剩余电流探测原理
剩余电流火灾监控系统一般由剩余电流检测元件、现场处理设备和集中监控设备组成。剩余电流火灾报警系统构成如下图所示。
剩余电流检测器的工作原理基于基尔霍夫电流定律,即电路内任意点的电流矢量和为0。检测剩余电流时,三相导线和中性线穿过一个电流互感器,当未发生接地故障时,无论三相负荷是否平衡,电流矢量和均为0;当发生接地故障时,故障电流会经过故障点流入大地,使电流互感器中电流矢量和不为0,该电流值即为剩余电流值。低压配电系统的接地形式决定了剩余电流检测元件是否能正常工作。低压配电系统的N线与PE线应该严格分开,通过剩余电流检测元件的N线不能作为PE线使用,不能重复接地,不能接设备外露可导电部分。TN-S系统剩余电流检测示意图如下图所示。
剩余电流互感器的剩余电流值在30~1000mA时连续可调,内置或外置的温度探测器在55~140℃时连续可调。
1.2 温度探测原理
热电阻测温是基于金属导体的电阻值随温度的增加而增加来进行温度测量的。测温传感器一般设置在电气系统的电缆接头、电缆本体、开关触点等相关发热部位,用于监测设备过热而引起的火灾。探测位置包括开关柜、配电箱接头、母线。
1.3 集中监控设备
集中监控设备通过有线/无线实时收集各个现场处理设备的信号,并对信号进行比较、分类等处理后,将相应信息送往报警、显示、控制信号输出、存储、打印等设备,实现集中显示、控制、记录等功能。集中监控设备可以分为监控单元与监控主机两种类型。监控单元主要用于有限数量、距 离的若干探测器的连接与管理,适用于小型系统;监控主机具有更强大的处理功能,可通过监控单元连接更多探测器,适用于大中型系统,并具备人性化管理软件及打印、拷贝等功能,能够储存12个月的报警信息记录,便于站级管理。
2.电气火灾报警系统方案
2.1 探测器选择
电气火灾探测器主要有分离型探测器(非独立式)和组合型探测器(独立式)两种。
1)分离型探测器(非独立式)。电气火灾监控设备与电气火灾监控探测器(包括终端探测头剩余电流互感器、温度传感器)分离配置。通过监控探测器采样配电柜(箱)内导电线路中的电流和剩余电流信号,经内置单片机系统分析处理后,上报消防控制室或值班室里的电气火灾监控设备,经过进一步分析处理后进行所需的联动控制,从而完成该系统应有的功能。优点:①系统分工明确、结构简单、成本少、故障率偏低,不含电源控制开关,不串入配电系统,只通过剩余电流互感器(或测温探头)取样信号,性能稳定可靠;②相对功能简单,探测器尺寸较小,适合安装在地铁低压柜馈线电缆室等比较狭窄的安装空间。缺点:在采购数量很少(少于10个)并需要就地报警的情况下,造价较高。
2)组合型探测器(独立式)。电气火灾监控设备与电气火灾监控探测器组合配置。与分离型探测器相比,不仅能满足对剩余电流与非正常温升的检测,还可以实现数据处理功能,并通过设备的液晶屏实现测量结果显示、参数设置等功能。优点:①采购数量很少并需要就地报警的情况下,造价较低;②在末端更易于维护人员操作与设置。缺点:①体积大,在地铁低压柜馈线电缆室比较狭窄的安装空间非常局促;②功能复杂,故障率高;③在探测点多的情况下,造价非常高。
由于地铁监控点数多,趋向于集中监控方式,且开关柜安装空间有限,故建议采用分离型探测器,并设专门的集中监控装置。
2.2 探测器位置设置
目前,地铁车站根据负荷重要性将负荷分为三级,对于不同的负荷采用不同的配电形式,为保证高可靠性,配电形式多为放射式配电。
一般负荷设就地电源箱,由变电所放射式配电;各类风机、空调器等环控设备由变电所馈出总电源给环控电控柜,再由环控电控柜统一放射式配电至设备;冷水水泵、冷却塔等冷水系统制冷设备由变电所馈出总电源给冷水机房电控柜,再由冷水机房电控柜统一配电至设备。冷水机组一般直接由变电所馈出到设备。
结合地铁目前的供电方案电气火灾探测器可安装在变电所0.4kv馈线回路处或下*级配电箱进线处。
1)安装在变电所0.4 kV馈线回路处。探测保护范围大,包括配电柜馈线电缆和配电箱下级的用电设备;安装集中,管理方便;空间跨度小,可采用无线通信方式或总线连接方式。
2)安装在下*级配电箱进线处。探测保护范围*确,就是配电箱下级的用电设备;无法探测配电柜至配电箱之间的电缆剩余电流情况;安装分散,管理不方便;空间跨度大,连接总线通常很长,信号衰减严重。
因此建议地铁新线将探测器设置在变电所0.4kv馈线回路处。
2.3 监控设备要求
1)电气火灾监控设备应具有直接连接剩余电流探测器、测温式电气火灾探测器的功能,应能同时处理上述探测器探测信号的能力。
2)监控设备应对所辖范围内的各类探测器的报警信号进行声、光报警,并在显示器上显示报警位置及探测器实测值。
3)不同类型探测器故障信息应有明显区别。监控设备能够按用户级和管理级权限灵活设置,用户级权限具有灵活分配模块操作权限功能。
4)监控设备应具有以太网接口(RJ45),可直接与综合监控系统联网。综合监控系统通过RJ45接口(TCP/IP协议)在访问和获取多功能火灾探测系统主机信息时,系统主机能够提供以自定义的报警分区为单位的即时光纤温度信息,包括*大温度、平均温度、*小温度、预报警信息、报警信息等,提供测温式电气火灾探测器、剩余电流式电气火灾探测器即时信息;接收来自综合监控系统的时钟同步信号,并校正自身时钟信号。
5)监控设备系统主机采用网络接口直接与火灾报警系统专业联网,火灾报警系统可通过该接口访问和获取系统主机信息,包括馈电回路剩余电流、馈电回路三相温度。
2.4 监控系统传输方案
1)有线传输方案
电气火灾监控系统有线传输方案如下图所示。
IP1 | IP2 | IP3 | IP4 | IP5 | IP6 | IP7 | IP8 | ||
感温 通信 光纤口总线口 | |||||||||
IP4-1 | 8 | P5- | 8 | 一 | P7 | 28 | |||
P | |||||||||
Po | 8 | P8 | |||||||
P6 |
日 | -4 8 | 28-4 | ||||||
PG 高 |
8 | 28 | 8 | ||||||
PG( | -6 | P8 | |||||||
IP4-2 | 8 | IP5-2 | 8 | P6二 | 一 | 38 | |||
P6 | P78 | P88 | |||||||
p 9 | 文 | -9 | 8 | P8-9 | 接 | ||||
P6- 0 | 日 | P7 0 | P8 0 | ||||||
P6- | P7 | P8一 | |||||||
IP1 | IIP2 | IIP3 | IP4 | IIP5 | IIP6 | IP7 | IIP8 | ||||
IIP3- | 8 | IP4- | 8 | IP5- | IP6- | IP7- | 1P8- | ||||
号 怜 |
P6 | P | 8 | ||||||||
日 | P6 | 27 | P8-3 | ||||||||
-4 | P6 | 8 | P7 | 8 | P8-4 | ||||||
-5 |
P6 心 |
日 |
IIP7 … |
日 | P8-5 | 号 | |||||
IIP5-6 | - | IIP7-6 | P8-6 | ||||||||
IIP3-2 | 8 | IIP4-2 | 8 |
-7 坐 |
8 | P6 | P | 8 | —/ | 8 | |
P6 | P7 | P8 8 | |||||||||
) 已 |
8 |
P 1 1 |
日 | P? | 9 | IP8-9 | -8 | ||||
P6-10 | B | IP7-T0 | IP8-10 | 8 | |||||||
P3- | P6-11 | IP7- | IP8- | ||||||||
对于分离式的电气火灾监控探测器,有以下几点要求:能独立与监控设备进行通信;具有1组剩余电流探测和6组温度探测的功能;剩余电流为30~500mA时能在监控设备后台连续可调;温度报警在55~140℃时监控设备后台连续可调。
2) 无线传输方案
电气火灾监控系统无线传输方案如下图所示。下图中,数据集中器和分离式电气火灾监控探测器采用蓝牙无线传输方式,而数据集中器和监控设备采用有线传输方式进行组网。
电 车站控制室 预留通信接口 |
气火灾监控主机 |
IP1 | IP2 | IP3 | IP4 | IP5 | IP6 | IP7 | P8 | |
8 IP4 |
8 IP5 |
P6 | P7 | 38- | ||||||
P6-2 | P7 | P8 -2 | ||||||||
P6-3 | P7子 |
P8 以 |
||||||||
P6-4 8 | P7-4 |
P8 立 |
||||||||
P6-5 | P7-5 | PS | ||||||||
P6-6 | P7-6 | 经 | ||||||||
至ISCS系统 | 感 温| 通 信 光纤口总线口 |
8 IP4-1 |
8 IP5-2 |
P6- | P7-7 | |||||
P⁶-8 | P7-8 | 登 | ||||||||
P6-9 | P7-9 | |||||||||
P6-10 B | P7-10 8 | 28-10 8 | ||||||||
P6-1 | P7-1 | P8- | ||||||||
母线感温光纤温度检测 | ||||||||||
P5-0 1P6-6 P7-6 -( 8 IP3-2 8 IP4-2 P5-7 8 IP6-7 P7-7 P8 二 IP5-8 IP6-8 P7-8 P& -8 P⁵=q 8 IP6 P7-9 P8-9 8 IP5-108 IIP⁶-108 IP7-108 IP8-108 P5-1 IIP6-l [P/- IF8-1 |
对于分离式电气火灾监控探测器,有以下几点要求:能独立与数据集中器进行蓝牙通信。
具有1组剩余电流探测和6组温度探测的功能;剩余电流为30~500mA时能在监控设备后台连续可调;温度报警在55~140℃时监控设备后台连续可调。
对于数据集中器,要求有以下几点:能独立与分离式的电气火灾监控探测器进行蓝牙通信;具有环网RS485接口功能;接收点数容量大于100。
蓝牙无线通信方式具有以下特点:短距无线通信;临时性对等连接的无线通信,一个主设备和一个从设备组成的点对点的通信连接;很好的抗干扰能力;模块体积很小,便于集成。低功耗;适用2.4GHz的无线通信频段;开放的接口标准。
根据以上分析,两种方案各有其优势。有线传输的产品目前国内厂家比较多,选择比较容易,性能可靠,缺点是后期维护更换存在不便。无线传输方案的缺点是产品选择较困难,但在地铁中也有成功的案例,如深圳地铁、昆明地铁,其优点是性能非常可靠,后期维护更换方便。
3.安科瑞电气火灾监控系统
3.1概述
Acre1-6000电气火灾监控系统,是根据国家现行规范标准由安科瑞电气股份有限公司研发的全数字化独立运行的系统,已通过国家消防电子产品质量监督检验中心的消防电子产品试验认证,并且均通过严格的EMC电磁兼容试验,保证了该系列产品在低压配电系统中的安全正常运行,现均已批量生产并在全国得到广泛地应用。该系统通过对剩余电流、过电流、过电压、温度和故障电弧等信号的采集与监视,实现对电气火灾的早期预防和报警,当必要时还能联动切除被检测到剩余电流、温度和故障电弧等超标的配电回路;并根据用户的需求,还可以满足与AcreIEMS企业微电网管理云平台或火灾自动报警系统等进行数据交换和共享。
3.2应用场合
适用于智能楼宇、高层公寓、宾馆、饭店、商厦、工矿企业、国家*点消防单位以及石油化工、文教卫生、金融、电信等领域。
3.3系统结构
3.4系统功能
监控设备能接收多台探测器的剩余电流、温度信息,报警时发出声、光报警信号,同时设备上红色“报警”指示灯亮,显示屏指示报警部位及报警类型,记录报警时间,声光报警一直保持,直至按设备的“复位”按钮或触摸屏的“复位”按键远程对探测器实现复位。对于声音报警信号也可以使用触摸屏“消声”按键手动消除。
当被监测回路报警时,控制输出继电器闭合,用于控制被保护电路或其他设备,当报警消除后,控制输出继电器释放。
通讯故障报警:当监控设备与所接的任一台探测器之间发生通讯故障或探测器本身发生故障时,监控画面中相应的探测器显示故障提示,同时设备上的黄色“故障”指示灯亮,并发出故障报警声音。电源故障报警:当主电源或备用电源发生故障时,监控设备也发出声光报警信号并显示故障信息,可进入相应的界面查看详细信息并可解除报警声响。
当发生剩余电流、超温报警或通讯、电源故障时,将报警部位、故障信息、报警时间等信息存储在数据库中,当报警解除、排除故障时,同样予以记录。历史数据提供多种便捷、快速的查询方法。
4.5配置方案
应用场合 | 型号 | 产品照片 | 功能 |
消防控制室 | Acrel-6000/B | 适用于1~4条通信总线*多可连接256个探测器,可适用于壁挂安装的场所。 | |
Acrel-6000/Q | 适用于大型组网,壁挂式监控主机数量较多且需集中查看的场所,主要监测壁挂主机信息。 | ||
一、二级 低压配电 |
ARCM200L-Z2 | 三相(I、U、kW、Kvar、kWh、Kvarh、Hz、cos中),视在电能、四象限电能计量,单回路剩余电流监测,4路温度监测,2路继电器输出,4路开关量输入,事件记录,内置时钟,点阵式LCD显示,2路独立RS485/Modbus通讯 | |
ARCM200L-J8 | 8路剩余电流监测,2路继电器输出,4路开关量输入,事件记录,内置时钟,点阵式LCD显示,1路RS485/Modbus通讯 | ||
ARCM300-J1 | 1路剩余电流监测,4路温度监测,1路继电器输出,事件记录,LCD显示,1路RS485/Modbus通讯 | ||
AAFD-□ | 检测末端线路的故障电弧,485通讯,导轨式安装。 | ||
ASCP200-□ | 短路限流保护、过载保护、内部超温限流保护、过欠压保护、漏电监测、线缆温度监测,1路RS485通讯,1路GPRS或NB无线通讯,额定电流为0-40A可设。 | ||
短路限流保护、过载保护、内部超温限流保护、过欠压保护、漏电监测、线缆温度监测,1路RS485通讯,1路NB或4G无线通讯,额定电流为0-63A可设。 | |||
配套附件 | AKH-0.66 | 测量型互感器,采集交流电流信号 | |
AKH-0.66/L | 剩余电流互感器,采集剩余电流信号 | ||
ARCM-NTC | 温度传感器,采集线缆或配电箱体温度 |
4.结束语
地铁采用放射式供电方式,在变电所0.4kv开关柜馈线回路处设置电气火灾探测器,既可探测末端设备的剩余电流情况,也可探测开关柜至末端配电箱段电缆的剩余电流情况。地铁低压柜馈线电缆室空间比较狭窄,分离式探测器便于安装,且造价更低。无线传输方案接线简单、故障点少,后期维护更换更简便。所以,在广州地铁新线路建设中建议采用在变电所0.4kv开关柜馈线回路处设置分离式探测器,并采用无线传输的方案。
【参考文献】
付朝立.基于泄漏电流监测的电气火灾报警系统在地铁中的应用[J]. 城市轨道研究,2014(4):132-134.
GB50116—2013 火灾自动报警系统设计规范[S].
DBJ/T15-77—2010 电气火灾监控系统设计、施工及验收规范[S].
GB50157—2013 地铁设计规范[S].
审核编辑 黄宇
全部0条评论
快来发表一下你的评论吧 !