什么是pstore
pstore最初是用于系统发生oops或panic时,自动保存内核log buffer中的日志。不过在当前内核版本中,其已经支持了更多的功能,如保存console日志、ftrace消息和用户空间日志。同时,它还支持将这些消息保存在不同的存储设备中,如内存、块设备或mtd设备。 为了提高灵活性和可扩展性,pstore将以上功能分别抽象为前端和后端,其中像dmesg、console等为pstore提供数据的模块称为前端,而内存设备、块设备等用于存储数据的模块称为后端,pstore core则分别为它们提供相关的注册接口。
通过模块化的设计,实现了前端和后端的解耦,因此若某些模块需要利用pstore保存信息,就可以方便地向pstore添加新的前端。而若需要将pstore数据保存到新的存储设备上,也可以通过向其添加后端设备的方式完成。
除此之外,pstore还设计了一套pstore文件系统,用于查询和操作上一次重启时已经保存的pstore数据。当该文件系统被挂载时,保存在backend中的数据将被读取到pstore fs中,并以文件的形式显示。
pstore工作原理
pstore 源文件主要有以下几个:fs/pstore/ram_core.c
fs/pstore/ ├── ftrace.c # ftrace 前端的实现 ├── inode.c # pstore 文件系统的注册与操作 ├── internal.h ├── Kconfig ├── Makefile ├── platform.c # pstore 前后端功能的核心 ├── pmsg.c # pmsg 前端的实现 ├── ram.c # pstore/ram 后端的实现,dram空间分配与管理 ├── ram_core.c # pstore/ram 后端的实现,dram的读写操作
文件创建
pstore文件系统位置在:
# ls /sys/fs/pstore console-ramoops-0 dmesg-ramoops-0
控制台日志位于 pstore 目录下的console-ramoops文件中,因为采用console机制,该文件中的日志信息也受printk level控制,并不一定是全的。
oops/panic日志位于 pstore 目录下的dmesg-ramoops-x文件中,根据缓冲区大小可以有多个文件,x从0开始。函数调用序列日志位于 pstore 目录下的ftrace-ramoops文件中。
相关代码在inode.c pstore_mkfile里:
/* * Make a regular file in the root directory of our file system. * Load it up with "size" bytes of data from "buf". * Set the mtime & ctime to the date that this record was originally stored. */ int pstore_mkfile(enum pstore_type_id type, char *psname, u64 id, int count, char *data, bool compressed, size_t size, struct timespec time, struct pstore_info *psi) { ........................ rc = -ENOMEM; inode = pstore_get_inode(pstore_sb); .............................. switch (type) { case PSTORE_TYPE_DMESG: scnprintf(name, sizeof(name), "dmesg-%s-%lld%s", psname, id, compressed ? ".enc.z" : ""); break; case PSTORE_TYPE_CONSOLE: scnprintf(name, sizeof(name), "console-%s-%lld", psname, id); break; case PSTORE_TYPE_FTRACE: scnprintf(name, sizeof(name), "ftrace-%s-%lld", psname, id); break; case PSTORE_TYPE_MCE: scnprintf(name, sizeof(name), "mce-%s-%lld", psname, id); break; case PSTORE_TYPE_PPC_RTAS: scnprintf(name, sizeof(name), "rtas-%s-%lld", psname, id); break; case PSTORE_TYPE_PPC_OF: scnprintf(name, sizeof(name), "powerpc-ofw-%s-%lld", psname, id); break; case PSTORE_TYPE_PPC_COMMON: scnprintf(name, sizeof(name), "powerpc-common-%s-%lld", psname, id); break; case PSTORE_TYPE_PMSG: scnprintf(name, sizeof(name), "pmsg-%s-%lld", psname, id); break; case PSTORE_TYPE_PPC_OPAL: sprintf(name, "powerpc-opal-%s-%lld", psname, id); break; case PSTORE_TYPE_UNKNOWN: scnprintf(name, sizeof(name), "unknown-%s-%lld", psname, id); break; default: scnprintf(name, sizeof(name), "type%d-%s-%lld", type, psname, id); break; } .................... dentry = d_alloc_name(root, name); ....................... d_add(dentry, inode); ................ }
pstore_mkfile根据不同的type,使用snprintf函数生成文件名name。生成的文件名格式为
接着使用d_alloc_name函数为根目录创建一个目录项dentry,最后使用d_add函数将目录项dentry与索引节点inode关联起来,将其添加到文件系统中。
pstore_register
ramoops负责把message write到某个ram区域上,platform负责从ram读取存到/sys/fs/pstore,ok,先来看机制代码platform.c。
backend需要用pstore_register来注册:
/* * platform specific persistent storage driver registers with * us here. If pstore is already mounted, call the platform * read function right away to populate the file system. If not * then the pstore mount code will call us later to fill out * the file system. */ int pstore_register(struct pstore_info *psi) { struct module *owner = psi->owner; if (backend && strcmp(backend, psi->name)) return -EPERM; spin_lock(&pstore_lock); if (psinfo) { spin_unlock(&pstore_lock); return -EBUSY; } if (!psi->write) psi->write = pstore_write_compat; if (!psi->write_buf_user) psi->write_buf_user = pstore_write_buf_user_compat; psinfo = psi; mutex_init(&psinfo->read_mutex); spin_unlock(&pstore_lock); ... /* * Update the module parameter backend, so it is visible * through /sys/module/pstore/parameters/backend */ backend = psi->name; module_put(owner);
backend判断确保一次只能有一个并记录了全局psinfo。
看下结构体pstore_info:
struct pstore_info { struct module *owner; char *name; spinlock_t buf_lock; /* serialize access to 'buf' */ char *buf; size_t bufsize; struct mutex read_mutex; /* serialize open/read/close */ int flags; int (*open)(struct pstore_info *psi); int (*close)(struct pstore_info *psi); ssize_t (*read)(u64 *id, enum pstore_type_id *type, int *count, struct timespec *time, char **buf, bool *compressed, ssize_t *ecc_notice_size, struct pstore_info *psi); int (*write)(enum pstore_type_id type, enum kmsg_dump_reason reason, u64 *id, unsigned int part, int count, bool compressed, size_t size, struct pstore_info *psi); int (*write_buf)(enum pstore_type_id type, enum kmsg_dump_reason reason, u64 *id, unsigned int part, const char *buf, bool compressed, size_t size, struct pstore_info *psi); int (*write_buf_user)(enum pstore_type_id type, enum kmsg_dump_reason reason, u64 *id, unsigned int part, const char __user *buf, bool compressed, size_t size, struct pstore_info *psi); int (*erase)(enum pstore_type_id type, u64 id, int count, struct timespec time, struct pstore_info *psi); void *data; };
name就是backend的name了。
*write和*write_buf_user如果backend没有给出会有个默认compat func,最终都走的*write_buf。
if (!psi->write) psi->write = pstore_write_compat; if (!psi->write_buf_user) psi->write_buf_user = pstore_write_buf_user_compat;
static int pstore_write_compat(enum pstore_type_id type, enum kmsg_dump_reason reason, u64 *id, unsigned int part, int count, bool compressed, size_t size, struct pstore_info *psi) { return psi->write_buf(type, reason, id, part, psinfo->buf, compressed, size, psi); } static int pstore_write_buf_user_compat(enum pstore_type_id type, enum kmsg_dump_reason reason, u64 *id, unsigned int part, const char __user *buf, bool compressed, size_t size, struct pstore_info *psi) { ... ret = psi->write_buf(type, reason, id, part, psinfo->buf, ... }
继续pstore注册:
if (pstore_is_mounted()) pstore_get_records(0);
如果pstore已经mounted,那就创建并填充文件by pstore_get_records:
/* * Read all the records from the persistent store. Create * files in our filesystem. Don't warn about -EEXIST errors * when we are re-scanning the backing store looking to add new * error records. */ void pstore_get_records(int quiet) { struct pstore_info *psi = psinfo; //tj: global psinfo ... mutex_lock(&psi->read_mutex); if (psi->open && psi->open(psi)) goto out; while ((size = psi->read(&id, &type, &count, &time, &buf, &compressed, &ecc_notice_size, psi)) > 0) { if (compressed && (type == PSTORE_TYPE_DMESG)) { if (big_oops_buf) unzipped_len = pstore_decompress(buf, big_oops_buf, size, big_oops_buf_sz); if (unzipped_len > 0) { if (ecc_notice_size) memcpy(big_oops_buf + unzipped_len, buf + size, ecc_notice_size); kfree(buf); buf = big_oops_buf; size = unzipped_len; compressed = false; } else { pr_err("decompression failed;returned %d ", unzipped_len); compressed = true; } } rc = pstore_mkfile(type, psi->name, id, count, buf, compressed, size + ecc_notice_size, time, psi); if (unzipped_len < 0) { /* Free buffer other than big oops */ kfree(buf); buf = NULL; } else unzipped_len = -1; if (rc && (rc != -EEXIST || !quiet)) failed++; } if (psi->close) psi->close(psi); out: mutex_unlock(&psi->read_mutex);
if needed,call pstore_decompress解压然后创建pstore文件by vfs接口pstore_mkfile。
pstore注册接下来是按类别分别注册:
if (psi->flags & PSTORE_FLAGS_DMESG) pstore_register_kmsg(); if (psi->flags & PSTORE_FLAGS_CONSOLE) pstore_register_console(); if (psi->flags & PSTORE_FLAGS_FTRACE) pstore_register_ftrace(); if (psi->flags & PSTORE_FLAGS_PMSG) pstore_register_pmsg();
psi->flags仍是由backend决定,只看pstore_register_kmsg和pstore_register_console。
pstore panic log注册
static struct kmsg_dumper pstore_dumper = { .dump = pstore_dump, }; /* * Register with kmsg_dump to save last part of console log on panic. */ static void pstore_register_kmsg(void) { kmsg_dump_register(&pstore_dumper); }
pstore_dump最终会call backend的write,直接用全局psinfo。
/* * callback from kmsg_dump. (s2,l2) has the most recently * written bytes, older bytes are in (s1,l1). Save as much * as we can from the end of the buffer. */ static void pstore_dump(struct kmsg_dumper *dumper, enum kmsg_dump_reason reason) { ... ret = psinfo->write(PSTORE_TYPE_DMESG, reason, &id, part, oopscount, compressed, total_len, psinfo);
kmsg_dump_register是内核一种增加log dumper方法,called when kernel oopses or panic。
/** * kmsg_dump_register - register a kernel log dumper. * @dumper: pointer to the kmsg_dumper structure * * Adds a kernel log dumper to the system. The dump callback in the * structure will be called when the kernel oopses or panics and must be * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. */ int kmsg_dump_register(struct kmsg_dumper *dumper) { unsigned long flags; int err = -EBUSY; /* The dump callback needs to be set */ if (!dumper->dump) return -EINVAL; spin_lock_irqsave(&dump_list_lock, flags); /* Don't allow registering multiple times */ if (!dumper->registered) { dumper->registered = 1; list_add_tail_rcu(&dumper->list, &dump_list); err = 0; } spin_unlock_irqrestore(&dump_list_lock, flags); return err; }
/** * kmsg_dump - dump kernel log to kernel message dumpers. * @reason: the reason (oops, panic etc) for dumping * * Call each of the registered dumper's dump() callback, which can * retrieve the kmsg records with kmsg_dump_get_line() or * kmsg_dump_get_buffer(). */ void kmsg_dump(enum kmsg_dump_reason reason) { struct kmsg_dumper *dumper; unsigned long flags; if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) return; rcu_read_lock(); list_for_each_entry_rcu(dumper, &dump_list, list) { if (dumper->max_reason && reason > dumper->max_reason) continue; /* initialize iterator with data about the stored records */ dumper->active = true; raw_spin_lock_irqsave(&logbuf_lock, flags); dumper->cur_seq = clear_seq; dumper->cur_idx = clear_idx; dumper->next_seq = log_next_seq; dumper->next_idx = log_next_idx; raw_spin_unlock_irqrestore(&logbuf_lock, flags); /* invoke dumper which will iterate over records */ dumper->dump(dumper, reason); /* reset iterator */ dumper->active = false; } rcu_read_unlock(); }
pstore console 注册
static struct console pstore_console = { .name = "pstore", .write = pstore_console_write, .flags = CON_PRINTBUFFER | CON_ENABLED | CON_ANYTIME, .index = -1, }; static void pstore_register_console(void) { register_console(&pstore_console); }
->write最终也会call backend write:
#ifdef CONFIG_PSTORE_CONSOLE static void pstore_console_write(struct console *con, const char *s, unsigned c) { const char *e = s + c; while (s < e) { unsigned long flags; u64 id; if (c > psinfo->bufsize) c = psinfo->bufsize; if (oops_in_progress) { if (!spin_trylock_irqsave(&psinfo->buf_lock, flags)) break; } else { spin_lock_irqsave(&psinfo->buf_lock, flags); } memcpy(psinfo->buf, s, c); psinfo->write(PSTORE_TYPE_CONSOLE, 0, &id, 0, 0, 0, c, psinfo); // tj: here spin_unlock_irqrestore(&psinfo->buf_lock, flags); s += c; c = e - s; } }
ramoops
下面来看下RAM backend: ramoops,先看probe:
static int ramoops_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ramoops_platform_data *pdata = dev->platform_data; ... if (!pdata->mem_size || (!pdata->record_size && !pdata->console_size && !pdata->ftrace_size && !pdata->pmsg_size)) { pr_err("The memory size and the record/console size must be " "non-zero "); goto fail_out; } ... cxt->size = pdata->mem_size; cxt->phys_addr = pdata->mem_address; cxt->memtype = pdata->mem_type; cxt->record_size = pdata->record_size; cxt->console_size = pdata->console_size; cxt->ftrace_size = pdata->ftrace_size; cxt->pmsg_size = pdata->pmsg_size; cxt->dump_oops = pdata->dump_oops; cxt->ecc_info = pdata->ecc_info;
pdata应该来源ramoops_register_dummy:
static void ramoops_register_dummy(void) { ... pr_info("using module parameters "); dummy_data = kzalloc(sizeof(*dummy_data), GFP_KERNEL); if (!dummy_data) { pr_info("could not allocate pdata "); return; } dummy_data->mem_size = mem_size; dummy_data->mem_address = mem_address; dummy_data->mem_type = mem_type; dummy_data->record_size = record_size; dummy_data->console_size = ramoops_console_size; dummy_data->ftrace_size = ramoops_ftrace_size; dummy_data->pmsg_size = ramoops_pmsg_size; dummy_data->dump_oops = dump_oops; /* * For backwards compatibility ramoops.ecc=1 means 16 bytes ECC * (using 1 byte for ECC isn't much of use anyway). */ dummy_data->ecc_info.ecc_size = ramoops_ecc == 1 ? 16 : ramoops_ecc; dummy = platform_device_register_data(NULL, "ramoops", -1, dummy_data, sizeof(struct ramoops_platform_data));
有几个可配参数:
/* * Ramoops platform data * @mem_size memory size for ramoops * @mem_address physical memory address to contain ramoops */ struct ramoops_platform_data { unsigned long mem_size; phys_addr_t mem_address; unsigned int mem_type; unsigned long record_size; unsigned long console_size; unsigned long ftrace_size; unsigned long pmsg_size; int dump_oops; struct persistent_ram_ecc_info ecc_info; };
mem_size:用于Ramoops的内存大小,表示分配给Ramoops的物理内存的大小。
mem_address:用于Ramoops的物理内存地址,指定用于存储Ramoops的物理内存的起始地址。
mem_type:内存类型,用于进一步描述内存的属性和特征。
record_size:每个记录的大小
console_size:控制台记录的大小
ftrace_size:Ftrace记录的大小
pmsg_size:pmsg消息记录的大小
dump_oops:是否转储oops信息的标志,表示是否将oops信息转储到Ramoops中。
ecc_info:RAM的ECC(纠错码)信息,用于提供关于ECC配置和处理的详细信息。
有个结构表示了ramoops的context:
struct ramoops_context { struct persistent_ram_zone **przs; struct persistent_ram_zone *cprz; struct persistent_ram_zone *fprz; struct persistent_ram_zone *mprz; phys_addr_t phys_addr; unsigned long size; unsigned int memtype; size_t record_size; size_t console_size; size_t ftrace_size; size_t pmsg_size; int dump_oops; struct persistent_ram_ecc_info ecc_info; unsigned int max_dump_cnt; unsigned int dump_write_cnt; /* _read_cnt need clear on ramoops_pstore_open */ unsigned int dump_read_cnt; unsigned int console_read_cnt; unsigned int ftrace_read_cnt; unsigned int pmsg_read_cnt; struct pstore_info pstore; };
在ramoops_probe时也是把ramoops_platform_data的成员赋给了context对应的。要了解具体含义,继续probe:
paddr = cxt->phys_addr; dump_mem_sz = cxt->size - cxt->console_size - cxt->ftrace_size - cxt->pmsg_size; err = ramoops_init_przs(dev, cxt, &paddr, dump_mem_sz); if (err) goto fail_out; err = ramoops_init_prz(dev, cxt, &cxt->cprz, &paddr, cxt->console_size, 0); if (err) goto fail_init_cprz; err = ramoops_init_prz(dev, cxt, &cxt->fprz, &paddr, cxt->ftrace_size, LINUX_VERSION_CODE); if (err) goto fail_init_fprz; err = ramoops_init_prz(dev, cxt, &cxt->mprz, &paddr, cxt->pmsg_size, 0); if (err) goto fail_init_mprz; cxt->pstore.data = cxt;
可见,是逐个init每个persistant ram zone,size一共有4段:
dump_mem_sz + cxt->console_size + cxt->ftrace_size + cxt->pmsg_size = cxt->size
mem_size就是总大小了,mem_address是ramoops的物理地址,record_size再看下oops/panic ram:
static int ramoops_init_przs(struct device *dev, struct ramoops_context *cxt, phys_addr_t *paddr, size_t dump_mem_sz) { int err = -ENOMEM; int i; if (!cxt->record_size) return 0; if (*paddr + dump_mem_sz - cxt->phys_addr > cxt->size) { dev_err(dev, "no room for dumps "); return -ENOMEM; } cxt->max_dump_cnt = dump_mem_sz / cxt->record_size; if (!cxt->max_dump_cnt) return -ENOMEM;
ok dump_mem_size大小的区域分成max_dump_cnt个,每个记录大小是record_size。
接着会call persistent_ram_new来分配内存给这个ram zone。
for (i = 0; i < cxt->max_dump_cnt; i++) { cxt->przs[i] = persistent_ram_new(*paddr, cxt->record_size, 0, &cxt->ecc_info, cxt->memtype, 0);
console/ftrace/pmsg ram zone同上分配。
最后处理flags并注册pstore:
cxt->pstore.flags = PSTORE_FLAGS_DMESG; //tj: 默认dump oops/panic if (cxt->console_size) cxt->pstore.flags |= PSTORE_FLAGS_CONSOLE; if (cxt->ftrace_size) cxt->pstore.flags |= PSTORE_FLAGS_FTRACE; if (cxt->pmsg_size) cxt->pstore.flags |= PSTORE_FLAGS_PMSG; err = pstore_register(&cxt->pstore); if (err) { pr_err("registering with pstore failed "); goto fail_buf; }
来看下ramoops pstore的定义的callback,他们通过全局psinfo而来:
static struct ramoops_context oops_cxt = { .pstore = { .owner = THIS_MODULE, .name = "ramoops", .open = ramoops_pstore_open, .read = ramoops_pstore_read, // psi->read .write_buf = ramoops_pstore_write_buf, //for non pmsg .write_buf_user = ramoops_pstore_write_buf_user, //for pmsg .erase = ramoops_pstore_erase, }, };
pstore使用方法
ramoops
配置内核
CONFIG_PSTORE=y CONFIG_PSTORE_CONSOLE=y CONFIG_PSTORE_PMSG=y CONFIG_PSTORE_RAM=y CONFIG_PANIC_TIMEOUT=-1
由于log数据存放于DDR,不能掉电,只能依靠自动重启机制来查看,故而要配置:CONFIG_PANIC_TIMEOUT,让系统在 panic 后能自动重启。
dts
ramoops_mem: ramoops_mem { reg = <0x0 0x110000 0x0 0xf0000>; reg-names = "ramoops_mem"; }; ramoops { compatible = "ramoops"; record-size = <0x0 0x20000>; console-size = <0x0 0x80000>; ftrace-size = <0x0 0x00000>; pmsg-size = <0x0 0x50000>; memory-region = <&ramoops_mem>; };
mtdoops
内核配置
CONFIG_PSTORE=y CONFIG_PSTORE_CONSOLE=y CONFIG_PSTORE_PMSG=y CONFIG_MTD_OOPS=y CONFIG_MAGIC_SYSRQ=y
分区配置
cmdline方式:
bootargs = "console=ttyS1,115200 loglevel=8 rootwait root=/dev/mtdblock5 rootfstype=squashfs mtdoops.mtddev=pstore"; blkparts = "mtdparts=spi0.0:64k(spl)ro,256k(uboot)ro,64k(dtb)ro,128k(pstore),3m(kernel)ro,4m(rootfs)ro,-(data)";
part of方式:
bootargs = "console=ttyS1,115200 loglevel=8 rootwait root=/dev/mtdblock5 rootfstype=squashfs mtdoops.mtddev=pstore";
partition@60000 { label = "pstore"; reg = <0x60000 0x20000>; };
blkoops
配置内核
CONFIG_PSTORE=y CONFIG_PSTORE_CONSOLE=y CONFIG_PSTORE_PMSG=y CONFIG_PSTORE_BLK=y CONFIG_MTD_PSTORE=y CONFIG_MAGIC_SYSRQ=y
配置分区
cmdline方式:
bootargs = "console=ttyS1,115200 loglevel=8 rootwait root=/dev/mtdblock5 rootfstype=squashfs pstore_blk.blkdev=pstore"; blkparts = "mtdparts=spi0.0:64k(spl)ro,256k(uboot)ro,64k(dtb)ro,128k(pstore),3m(kernel)ro,4m(rootfs)ro,-(data)";
part of方式:
bootargs = "console=ttyS1,115200 loglevel=8 rootwait root=/dev/mtdblock5 rootfstype=squashfs pstore_blk.blkdev=pstore";
partition@60000 { label = "pstore"; reg = <0x60000 0x20000>; };
pstore fs
挂载pstore文件系统
mount -t pstore pstore /sys/fs/pstore
挂载后,通过mount能看到类似这样的信息:
# mount pstore on /sys/fs/pstore type pstore (rw,relatime)
如果需要验证,可以这样主动触发内核崩溃:
# echo c > /proc/sysrq-trigger
不同配置方式日志名称不同
ramoops
# mount -t pstore pstore /sys/fs/pstore/ # cd /sys/fs/pstore/ # ls console-ramoops-0 dmesg-ramoops-0 dmesg-ramoops-1
mtdoops
# cat /dev/mtd3 > 1.txt # cat 1.txt
blkoops
cd /sys/fs/pstore/ ls dmesg-pstore_blk-0 dmesg-pstore_blk-1
总结
pstore setup 流程:
ramoops_init ramoops_register_dummy ramoops_probe ramoops_register
查看 pstore 数据保存流程:
register a pstore_dumper // when panic happens, kmsg_dump is called call dumper->dump pstore_dump
查看 pstore 数据读取流程:
ramoops_probe persistent_ram_post_init pstore_register pstore_get_records ramoops_pstore_read pstore_decompress (only for dmesg) pstore_mkfile (save to files)
全部0条评论
快来发表一下你的评论吧 !