机器视觉系统构成、分类与优势解析

工业控制

1201人已加入

描述

随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。

机器视觉技术,是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。机器视觉主要用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。机器视觉技术最大的特点是速度快、信息量大、功能多。

什么是机器视觉?

机器视觉的定义:机器视觉就是使用光学非接触式感应设备自动接收并解释真实场景的图像以获得信息控制机器或流程。

机器视觉就是为了流程控制或检测所制造的产品而从数字图像中自动提取信息,看下图示范:

人工智能

▲ 机器视觉运用图解

为了更好地理解机器视觉,下面,我们以啤酒厂采用的填充液位检测系统为例来进行说明: 

人工智能

▲图1 啤酒瓶填充液位检验示例

当每个啤酒瓶移动经过检测传感器时,检测传感器将会触发视觉系统发出频闪光,拍下啤酒瓶的照片。采集到啤酒瓶的图像并将图像保存到内存后,视觉软件将会处理或分析该图像,并根据啤酒瓶的实际填充液位发出通过-未通过响应。如果视觉系统检测到一个啤酒瓶未填充到位,即未通过检测,视觉系统将会向转向器发出信号,将该啤酒瓶从生产线上剔除。操作员可以在显示屏上查看被剔除的啤酒瓶和持续的流程统计数据。

另外,机器视觉系统还能够进行物品测量,比如确定火花塞间隙或提供位置信息,引导机器人在制造组装过程中将元件对位,图2显示的例子主要是说明机器视觉系统如何能够用于进行滤油器(右)通过或未通过检测,以及测量支架上中心轴头的宽度(左)。

人工智能

▲图2 机器视觉系统能够在生产线上进行实时测量和检验,比如加工支架(左)或滤油器(右)

在这个应用示例中,填充液位检验系统仅可提供两种结果,这显示了二进制系统的特征:

1、  如果产品合格,则检测结果为“通过”

2、  如果产品不合格,则检测结果为“未通过”。

机器视觉的优势究竟有哪些?

虽然人类视觉最擅长于对复杂、非结构化的场景进行定性解释,但机器视觉则凭借速度、精度和可重复性等优势,擅长于对结构化场景进行定量测量,举例来说,在生产线上,机器视觉系统每分钟能够对数百个甚至数千个元件进行检测。配备适当分辨率的相机和光学元件后,机器视觉系统能够轻松检验小到人眼无法看到的物品细节特征。

另外,由于消除了检验系统与被检验元件之间的直接接触,机器视觉还能够防止元件损坏,也避免了机械部件磨损的维护时间和成本投入。通过减少制造过程中的人工参与,机器视觉还带来了额外的安全性和操作优势。此外,机器视觉还能够防止洁净室受到人为污染,也能让工人免受危险环境的威胁。

机器视觉系统的分类

•智能相机

•基于嵌入式

•基于PC

机器视觉系统的组成

•图像获取:光源、镜头、相机、采集卡、机械平台

•图像处理与分析:工控主机、图像处理分析软件、图形交互界面。

•判决执行:电传单元、机械单元

人工智能

审核编辑:黄飞

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分