电子说
本文来自公众号【信熹资本】,这是一篇整理的非常细致的传感器产业介绍内容,本次更新“投资思考”部分内容,文末最新更新了关于传感器产业的一些投资思考,“从电磁波图谱看传感器”、“从MEMS工艺看传感器”、“传感器的智能化”等方向分析未来传感器产业的发展趋势和潜在机会。
本文涵盖了传感器的相关概念、发展历史、分类方式、产业链和市场情况等信息。与其他笼统介绍传感器产业的研报资料不同,本文具体而微,详细说明了各种传感器的情况,每个分类、每个特性、每个术语、每个环节,本文都一一解析清楚,几乎都介绍的明明白白,显然经过长时间的资料收集。
本文有助于我们厘清很多传感器概念上的问题,窥视不同传感器领域的难点和痛点。譬如航天级、军工级、工业级、医疗级、科研级、消费级等传感器有什么不同的需求?电阻式、电容式、电感式、光电式传感器的区别?MEMS芯片生产各个环节需要用到什么设备?每个流程怎样?……等等
此外文中部分突出观点有:
大多数创业公司都会选择单一传感器作为早期的创业方向;传感器开始从曾经的纯模拟工作方式转向数字传输方式;在传感器的开发过程中,通常会先从传感器的敏感材料入手;传感器各细分市场的割裂度更高,且发展变化的速度相对没那么快,更容易培养出小而美的企业;当半导体传感器厂商发展到较大规模后,一般会倾向于自建部分产能,形成“核心产品依靠IDM,边缘产品或产能调节依靠代工厂”的生产模式,既可以降低生产成本,又可以加固技术壁垒。;对知识产权的保护力度不足,导致消费电子传感器厂商普遍毛利较低,且容易到市场瓶颈;消费电子传感器的主要机会在于还未被市场验证、具有显著创新性的传感器……
本文内容较详细,可按如下小结目录获取对应信息:
一、行业背景
二、智能感知与感知技术
三、传感器的相关概念
四、传感器的发展历史
五、传感器的分类
1. 按照检测变量分类
1) 位置/运动传感器
2) 力传感器
3) 温度传感器
4) 光学传感器
5) 声音传感器
6) 磁场传感器
7) 气体传感器
8) 湿度传感器
9) 生化传感器
2. 按照应用场景不同
1) 航天级
2) 军工级
3) 工业级
4) 医疗级
5) 科研级
6) 消费级
3. 按照输出量的性质分类
1) 模拟传感器
2) 数字传感器
4. 按照敏感材料不同
1) 金属类材料
2) 半导体材料
3) 陶瓷类材料
4) 高分子类材料
5. 按照转换原理不同
1) 电阻式传感器
2) 电容式传感器
3) 电感式传感器
4) 光电式传感器
5) 光栅式传感器
6) 压电式传感器
6. 小结
六、传感器的产业链情况
1、 上游:材料
2、上游:设计及仿真软件
3、上游:生产设备
4、中游:设计
5、中游:加工制造
6、中游:封装
7、中游:测试
七、市场情况
1、汽车传感器
2、工业传感器
3、医疗传感器
4、消费电子传感器
八、投资思考
1、从电磁波图谱看传感器
1)光电传感器
2)微波探测传感器
3)投资方向思考
2、从MEMS工艺看传感器
1)MEMS传感器简介
2)投资方向思考
3、传感器的智能化
1)单传感智能化
2)多传感融合
九、结语
一、行业背景 人类历史继经历了18世纪以“机械化”为核心的第一次工业革命、19世纪以“电气化”为核心的第二次工业革命和20世纪以“信息化”、“自动化”为核心的第三次工业革命,当下正处在以“智能化”为核心的第四次工业革命过程中,围绕着“智能化”的各个环节正展现出蓬勃发展的生命力。我们认为,“智能化”是指机器或系统在行为过程中具备更强的智慧性,包括认知能力、学习能力、记忆能力、判断力等,其具有以下几个主要特征: 一是具有更强的感知能力,即具有能够感知外部世界、获取外部信息的能力,这是产生智能活动的前提条件和必要条件; 二是具有记忆和思维能力,即能够存储感知到的外部信息及由思维产生的知识,同时能够利用已有的知识对信息进行分析、计算、比较、判断、联想、决策; 三是具有学习能力和自适应能力,即通过与环境的相互作用,不断学习积累知识,使自己能够适应环境变化; 四是具有行为决策能力,即对外界的刺激作出反应,形成决策并传达相应的信息。 和第三次工业革命相比较,曾经的“信息化”更多关注信息层面的收集和管理,“自动化”更关注执行层面的可靠和稳定,这些都为如今的“智能化”的发展打下基础。“智能化”更关注整个系统的智慧性,依赖于各部分技术能力的提升,例如人工智能、大数据、物联网、感知技术等。
二、智能感知与感知技术 智能感知成为本次工业革命的重要驱动力量。智能感知是指:为了满足人类的需求,系统能动地感知外界事物,利用大数据、物联网、人工智能等技术进行认知、决策并执行的过程。 “智能化”需要依靠各种智能感知系统得以实现。一切智能感知系统的结构都可以概括为“感知”、“计算”和“执行”三个子系统,不同子系统之间通过“通信”相连接,从而实现各种功能。 其中,“感知”子系统即感知技术,其功能实现主要依赖于传感器。传感器将现实世界的信号,转换为数字计算机可以理解的信号,就像各种感官系统在人类感受物理世界过程中发挥的功能一样。传感器是计算机感受和理解现实世界的第一步,是实现自动检测和自动控制的首要环节,是“智能化”时代的重要基础设施。 三、传感器的相关概念 传感器,英文Sensor,由Sense一词演变而来,最早出现于20世纪30年代,在“信息化”、“自动化”时代背景下传感器就已经成为重要角色,当进入到“智能化”时代时,其重要性进一步凸显,逐渐得到更多关注。 我们认为,虽然传感器一词覆盖的范围不断扩大,品类日渐丰富,但所有传感器都有这样的共同本质:传感器是一种检测装置——能够感受到被测量的信息,并将感受到的信息按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。 传感器通常由敏感元件、转换元件和转换电路三部分组成。其中: 敏感元件是指传感器中能直接感受或响应被测量的部分,常见可测量的信息如温度、光强、压力等。 转换元件是将上述非电量转换成电参量,如电阻、电压、电流等。 转换电路的作用是将转换元件输出的电信号经过处理转换成便于处理、显示、记录和控制的部分,如放大、滤波、调制等。 这三个部分的不同设计又分别不同程度上影响了传感器的成本及各项指标,并适合于不同的应用场景。敏感元件决定了传感器基本的工作原理,对性能产生最根本的影响。转换元件和转换电路的存在是为了使敏感元件更好地工作。为了发挥敏感元件的最优性能,同时满足下游应用场景的需求,往往需要对转换电路进行定制化设计。 以MEMS麦克风为例,其典型结构如下图所示。声波信号先作用于MEMS芯片,MEMS芯片部分包含了“敏感元件”和“转化元件”,通过金线连接到包含“转换电路”的ASIC芯片中,最后输出音频电信号。其他结构主要辅助传感器更稳定、可靠地工作。 传感器常见的性能评价指标可以分为静态指标和动态指标两类。 其中,静态指标主要考核被测量在稳定状态下传感器的性能,包括分辨率、灵敏度、线性度、重复性、迟滞、稳定性等。 ① 分辨率:传感器能够检测到的最小输入变化量,即只有输入变化量超过一定阈值时,传感器的输出量才会产生变化。分辨率越小,说明传感器对被测量的分辨能力越强。 ② 灵敏度:传感器输出变化量与输入变化量之比,某些情况下可以简单理解为信号放大的倍数。灵敏度越高,说明传感器对被测量变化的响应越大,越有利于信号处理。但灵敏度过高也会导致噪声干扰增加,影响测量精度。 ③ 线性度:传感器输出与输入成正比的范围。线性度越高,说明传感器输出与输入之间的关系越简单,越容易校准和计算。 ④ 重复性:传感器在同一条件下,对同一输入按同一方向进行多次测量时,输出之间的差异程度。重复性越好,说明传感器输出越稳定,随机误差越小。 ⑤ 迟滞:传感器对正向(输入增大)和反向(输入减小)输入的输出之间的不一致程度。迟滞越小,说明传感器输出越对称,滞后误差越小。 ⑥ 稳定性:传感器在相当长时间内保持性能不变的能力。稳定性受到温度、湿度、机械振动、电磁干扰等环境因素的影响。稳定性越好,说明传感器输出越可靠,系统误差越小。
动态指标主要考察被测量在变化状态下传感器的性能,包括采样频率、阶跃响应等。 ① 采样频率:采样频率是指传感器在单位时间内可以采样的测量结果的多少。采样频率反映了该传感器的快速反应能力,是动态特性指标中最重要的一个。对于被测量快速变化的场合,采样频率是必须要充分考虑的技术指标之一。 ② 阶跃响应:传感器对阶跃输入信号(即瞬间从零变为一定值的信号)的输出变化过程。阶跃响应反映了传感器的动态特性,如上升时间、峰值时间、超调量、调节时间等。阶跃响应越快,说明传感器对突变信号的响应越及时,动态误差越小。 传感器的发展历史,就是一部不断在提升性能和降低生产成本之间来回进行选择的历史。当前几乎每种传感器都存在多种技术路径去实现,往往具有不同程度的性能和成本优势,也因此适用于不同的应用场景。 以红外探测器为例,目前最为广泛使用的可以分为制冷型和非制冷型两种,这两种传感器最主要的区别在于敏感元件材料的不同,进一步导致成本和性能的差异,从而适用于不同的应用场景。长期来看,由于底层原理的限制,各种技术路线只能在局部指标上做最优解,很难出现哪种技术路线完全取代另一种的情况。 四、传感器的发展历史 传感器的起源可以追溯到人类最早的测量工具,如温度计、压力计、度量衡等。这些工具都是利用物质的某些物理性质(如热胀冷缩、弹性变形、比重差异等)来反映被测量的信息,并通过人眼或其他辅助设备来读取。这些原始的传感器虽然只能测量一些基本的物理量,而且精度和可靠性都不高,但是它们为后来传感器技术的发展奠定了基础。 根据不同的技术特征和应用领域,传感器的发展可以分为以下几个阶段: 机械化时代(人类出现-1870年前后):这一时期出现了最早的机械式传感器,如指南车、骨尺、天平、日晷仪、地动仪等。这些传感器都是利用机械结构和运动原理来实现检测功能,主要应用于方向、长度、重量、时间和地震等方面。 电气化时代(1870年-1940年):这一时期出现了最早的电气式传感器,如热电偶、磁电偶、光电管、光敏电阻、霍尔元件、磁阻元件等。这些传感器都是利用电学效应和电路原理来实现检测功能,主要应用于温度、电流、电压、光强、磁场等方面。 半导体化时代(1940年-1970年):这一时期出现了最早的半导体式传感器,如半导体热电偶、PN结温度传感器、集成温度传感器、声学温度传感器、红外传感器、微波传感器等。这些传感器都是利用半导体材料和集成电路技术来实现检测功能,主要应用于温度、光强、距离等方面。 微机械化时代(1970年-2010年):这一时期出现了最早的微机械式(MEMS)传感器,如微机械陀螺仪、微机械加速度计、微机械压力传感器等。这些传感器都是利用微机械技术和微加工技术来实现检测功能,主要应用于角速度、加速度、压力等方面。 智能化时代(2010年至今):这一时期出现了更先进的智能式传感器,传感器集成的功能日益丰富,不仅传统测量性能进一步提升,同时开始集成更多计算能力,将更多数据处理工作放在边缘端,减少对中心处理器的依赖,即“边缘计算”。 智能化时代前,传感器的发展更多关注于传感器原有功能的提升,传感器更像一个独立的个体。进入智能化时代后,下游应用场景的需求开始被更多考虑,传感器更多作为一个智能化系统的一部分开始发展。 这里需要注意,并不是进入智能化时代后,半导体化时代和微机械化时代下的传感器便不再发展了,各种技术路线的传感器依然处在不断迭代发展的过程中。传感器不仅在向内进行提升,同时在向外进行链接扩展。 总结起来,传感器在发展过程中体现出的主要趋势是多功能化、高性能化、低成本化、微型化,这也将是未来传感器的发展主要方向。 多功能化:传感器能够集成多种功能,如测量多种参数、处理数据、存储信息、通信交互等,提高了传感器的效率和灵活性。 高性能化:传感器能够提高测量的精度、灵敏度、稳定性和可靠性,降低测量的误差和干扰,满足更高的测量要求。 低成本化:传感器能够采用新型材料和新型工艺制造,降低生产成本和维护成本,实现大规模生产和应用。 微型化:传感器能够以更小的体积实现同水平的性能,可满足更多应用场景的体积需求。一般来说,体积越小也意味着量产后成本越低、实际使用中功耗越低。
五、传感器的分类 传感器的分类有多种方式,从不同的角度有不同的分类方式。当使用者在选择使用哪种传感器时,会根据检测变量、应用场景、输出量的性质等,选择相匹配的传感器。当研发企业在选择设计、生产传感器时,更多会考虑到敏感材料和转换原理等。 1. 按照检测变量分类 最清晰、直观的传感器分类方式是基于检测变量进行分类。 传感器的的细分行业一般是根据检测变量不同进行划分,因此这种分类方式可以更方便我们进行细分行业的研究,这一方法在分析传感器行业的中早期创业公司时会显得尤为关键。 大多数创业公司都会选择单一传感器作为早期的创业方向,这时候就需要从检测变量出发,寻找对应以及相近的细分行业,直接分析对应的细分行业可以对现有的市场规模、竞争格局建立认知和判断,间接分析相近的细分行业可以对可拓展的市场规模、潜在竞争对手进行预测和分析。 这一分析方式对于已经进入成熟阶段的传感器巨头公司来说,重要程度会有所减弱,这是由于巨头公司往往会选择对同一技术平台的传感器进行广泛布局,单一细分市场对公司业绩影响程度有限,技术平台能力对于公司的重要性会增加。 1) 位置/运动传感器 用于测量物体的位置、位移、速度、加速度等参数,如加速度计、陀螺仪、光电编码器、超声波雷达、激光雷达、毫米波雷达等,这类传感器目前广泛应用于自动化控制、姿态识别、自动驾驶等场景。 加速度计:利用惯性质量在受加速度时会产生位移的特性,将物体的加速度转换为位移信号,再经过电容或压阻式变换器转换为电容或电阻信号,再经过调理电路转换为电压或电流信号。 陀螺仪:利用回转体或振动体在旋转时产生的科里奥利力或进动角,将物体的角速度或角位移转换为电容或电阻信号,再经过检测电路转换为电压或电流信号。 光电编码器:利用光电效应,将输出轴上的机械几何位移量转换成电信号,输出脉冲或编码。 超声波传雷达:利用超声波的反射、折射、干涉等特性,将物体的距离、速度或形状转换为超声波信号,再经过超声波探头转换为电信号,输出模拟或数字信号。 激光雷达:以激光作为信号源,由激光器发射出的激光束来探测目标的距离、方位、高度、速度、姿态等特征量,将目标空间位置转换成电信号,输出点云或图像。脉冲式激光雷达利用反射激光的时间间隔来计算相对距离;而连续波激光雷达则通过计算反射光与反射光之间的相位差得到目标距离。 毫米波雷达:以毫米波作为信号源,由天线发射出的毫米波束,来探测目标的距离、方位、高度、速度、姿态等特征量,将目标空间位置转换成电信号。 2) 力传感器 用于测量物体的力、压力、重量、扭矩等参数,如压电式传感器、压阻式传感器等。 压电式传感器:利用压电材料在受力时会产生极化而导致表面带电的特性,将物体的力、压力、重量或振动转换为电荷信号,再经过积分或放大器转换为电压或电流信号。 压阻式传感器:利用压阻材料在受力时会产生压阻效应而导致电阻值变化的特性,将物体的力、压力、重量或振动转换为电阻信号,再经过电桥或放大器转换为电压或电流信号。 3) 温度传感器 用于测量物体或环境的温度,如热电偶、热敏电阻、红外传感器等。 热电偶:利用两种不同金属材料在温度不同时会产生热电势差的特性,将物体或环境的温度转换为热电势信号,再经过温度计或放大器转换为温度值或电压信号。 热敏电阻:利用金属材料在温度变化时会产生正温度系数(PTC)或负温度系数(NTC)而导致电阻值变化的特性,将物体或环境的温度转换为电阻信号,再经过分压或放大器转换为温度值或电压信号。 红外传感器:通过感应目标辐射的红外线,利用红外线的物理性质来进行测量。红外传感器根据探测机理可分成为基于光电效应的光子探测器和基于热效应的热探测器。
4) 光学传感器 用于测量光的强度、波长、相位等参数,如光电二极管、光敏电阻、光纤传感器等。 光电二极管:利用光电效应,当光照射到半导体材料时,会产生电子-空穴对而导致电流变化的特性,将光的强度或颜色转换为电流信号,再经过分压或放大器转换为光强值或电压信号。 光敏电阻:利用光阻效应,当光照射到半导体材料时,会改变其导电率而导致电阻值变化的特性,将光的强度转换为电阻信号,再经过分压或放大器转换为光强值或电压信号。 光纤传感器:利用光纤的传输、反射、干涉等特性,将物体的位置、位移、速度、温度、压力、应变等参数转换为光信号,再经过光电元件转换为电信号,输出模拟或数字信号。 5) 声音传感器 用于测量声音的强度、频率、相位等参数,如麦克风、声纳传感器、超声波传感器等。 麦克风:利用声波对振动膜的作用而产生电动势的特性,将声音的强度或频率转换为电压信号,再经过滤波或放大器转换为声音值或频率信号。 声纳传感器:利用声波的反射、折射、干涉等特性,将物体的距离、速度或形状转换为声波信号,再经过声波探头转换为电信号,输出模拟或数字信号。 6) 磁场传感器 用于测量磁场的强度、方向、变化等参数,如霍尔效应传感器、磁阻效应传感器、磁致伸缩效应传感器等。 霍尔效应传感器:利用霍尔效应,当导体通过恒定电流并置于磁场中时,会在垂直于电流和磁场方向的两端产生电压差,这个电压差与磁场强度成正比,输出电压信号。 磁阻效应传感器:利用磁阻效应,当导体通过恒定电流并置于磁场中时,会在垂直于电流和磁场方向的两端产生电压差,这个电压差与磁场强度成正比,输出电压信号。 磁致伸缩效应传感器:利用磁致伸缩效应,当铁磁材料置于磁场中时,会产生沿着磁场方向的伸缩变形,这个变形与磁场强度成正比,输出位移或应变信号。 7) 气体传感器 用于测量气体的成分、浓度、质量等参数,如气敏电阻、气敏二极管、光电气体传感器等。 气敏电阻:利用气敏材料在吸附气体时会产生导电率变化而导致电阻值变化的特性,将气体的成分或浓度转换为电阻信号,再经过分压或放大器转换为气体值或电压信号。 气敏二极管:利用气敏材料在吸附气体时会产生导通效应而导致二极管导通的特性,将气体的成分或浓度转换为二极管导通状态,再经过分压或放大器转换为气体值或电压信号。 光电气体传感器:利用不同气体对不同波段的光有不同的吸收特征,将气体的种类及浓度转换为光谱吸收信号,再经过光电元件或光谱仪转换为电信号或光谱信号。 8) 湿度传感器 用于测量物体或环境的湿度,如电容式湿度传感器、电阻式湿度传感器、热湿敏电阻等。 电阻式湿度传感器:利用湿敏材料在吸附水分子时会产生电阻率变化而导致电阻值变化的特性,将湿度转换为电阻信号,再经过分压或放大器转换为湿度值或电压信号。常用的湿敏材料有金属氧化物、硅、陶瓷等。 电容式湿度传感器:利用湿敏材料在吸附水分子时会改变其介电常数而导致电容量变化的特性,将湿度转换为电容信号,再经过分压或放大器转换为湿度值或电压信号。常用的湿敏材料有高分子薄膜、聚苯乙烯、聚酰亚胺等。 9) 生化传感器 用于测量生物或化学物质的活性、浓度、反应速率等参数,如酶电极、抗体电极、DNA芯片等。 酶电极:利用酶与底物反应产生可测量的物质的特性,将生物或化学物质的活性或浓度转换为反应物质的浓度,再经过其他传感器进一步转换为电信号。 抗体电极:利用抗体与抗原结合产生可测量的物质(如pH)的特性,将生物或化学物质的活性或浓度转换为反应物质的浓度,再经过其他传感器(如pH传感器)转换为电信号。 DNA芯片:利用DNA与互补序列结合产生可测量的物质(如荧光)的特性,将生物或化学物质的活性或浓度转换为反应物质的浓度,再经过其他传感器(如荧光传感器)转换为电信号。 2. 按照应用场景不同 由于传感器的应用存在显著的行业特征,在发展过程中,也逐渐分化出针对不同应用场景的传感器类别,虽然这不是一种严格的分类标准,但是对于传感器的选用有很重要的价值。不同场景对应的传感器具有明显的性能、检测标准、使用环境、价格区间的区别。 为了更直观地比较不同应用场景下的传感器的特点和差异,我们可以用一个表格来进行横向对比。表格中列出了六个等级的传感器在精度、稳定性、可靠性、耐久性、成本和应用领域等方面的大致情况。 1) 航天级 航天级传感器是指用于航天领域的高端传感器,它们具有极高的精度、稳定性、可靠性和耐久性,能够适应极端的温度、压力、湿度、辐射等环境条件,同时也需要具有轻质化、小型化和低功耗等特点。 航天级传感器通常需要经过严格的设计、制造、测试和认证过程,成本也相对较高。航天级传感器广泛应用于航天飞行器、卫星、火箭、导弹等系统中,用于测量位置、速度、加速度、姿态、温度、压力等参数,以实现飞行控制、导航定位、通信链路等功能。 2) 军工级 军工级传感器是指用于军事领域的高性能传感器,它们具有较高的精度、稳定性、可靠性和耐久性,能够适应复杂和恶劣的战场环境,同时也具有抗干扰、抗破坏和保密等特点。 军工级传感器通常需要满足一定的军用标准和规范,成本也相对较高。军工级传感器广泛应用于武器装备、作战平台、指挥控制等系统中,用于测量目标信息、环境信息、装备状态等参数,以实现目标侦察、火力打击、防御拦截等功能。 3) 工业级 工业级传感器是指用于工业领域的传感器,它们具有较好的精度、稳定性、可靠性和耐久性,能够适应一般的工作环境,同时也具有成本效益、易于安装和维护等特点。 工业级传感器通常需要满足一定的工业标准和规范,成本也相对适中。工业级传感器广泛应用于机械制造、电力能源、化工石油、冶金矿山等行业中,用于测量温度、压力、流量、位移、力、扭矩等参数,以实现工业自动化、过程控制、质量检测等功能。 4) 医疗级 医疗级传感器是指用于医疗领域的专用传感器,它们具有较高的精度、灵敏度、安全性和舒适性,能够适应人体的生理特性和医疗要求,同时也更多考虑无创性、生物相容性和智能化等特点。 医疗级传感器通常需要满足一定的医疗标准和规范,成本也相对较高。医疗级传感器广泛应用于医疗诊断、治疗监护、健康管理等领域中,用于测量人体的温度、血压、血氧、心率、脑电、肌电等参数,以实现医疗服务和健康管理。 5) 科研级 科研级传感器是指用于科学研究领域的高精密传感器,它们具有极高的精度、灵敏度、稳定性和可靠性,能够适应各种特殊的实验条件和要求,同时也具有创新性、多功能性和可定制性等特点。 科研级传感器通常需要经过精密的设计、制造、校准和验证过程,成本也相对较高。科研级传感器广泛应用于物理学、化学学、生物学等基础科学和前沿科学领域中,用于测量微观世界和宏观世界中各种复杂和微妙的现象和规律。 6) 消费级 消费级传感器是指用于消费品领域的普通传感器,它们具有一定的精度、稳定性、可靠性和耐久性,能够适应日常生活环境,同时也具有低成本、小型化和低功耗等特点。 消费级传感器通常需要满足一定的消费标准和规范,成本也相对较低。消费级传感器广泛应用于手机、电脑、智能穿戴等消费电子产品中,用于测量位置、方向、光线、声音等参数,以实现人机交互、环境适应、功能增强等功能。 3. 按照输出量的性质分类 从上世纪90年代开始,传感器开始从曾经的纯模拟工作方式转向数字传输方式,发展到现在,数字传感器在许多领域已经十分盛行。不过目前在不少应用场景下,模拟传感器的优势还依然存在。 我们认为,随着“智能化”的发展,模拟传感器的适用场景将逐步减少。得益于数字传感器使用方便、更容易在后端实现功能集成等优点,其更加适应当今智能化发展的需求,已经越来越成为传感器的主流。甚至于出现一些传感器公司,其技术能力的优势在于设计性能更强、功耗更低的ADC(英文全称为Analog to Digtal Converter,中文名称为模数转换器,可将模拟信号转换为数字信号),在前端敏感元件并无特殊优势积累,依然可以在市场上占据一席之地。
1) 模拟传感器 模拟传感器是指输出连续变化的模拟信号的传感器,一般是电压、电流等物理量。模拟传感器的优点是输出信号与输入量之间有直接的对应关系,可以反映输入量的变化过程和细节。模拟传感器的缺点是输出信号容易受到干扰和噪声的影响,需要进行放大、滤波、调理等处理,而且不便于数字化处理和远距离传输。 2) 数字传感器 数字传感器是指输出离散变化的数字信号的传感器。数字信号可以是二进制码、脉冲序列、频率等物理量,也可以是编码后的数据。 相较于模拟传感器,数字传感器一般是增加了模数转换器,其优点是输出信号具有较强的抗干扰能力,不需要进行复杂的信号处理,而且便于数字化处理和远距离传输。数字传感器的缺点是输出信号不能反映输入量的连续变化过程和细节,而且需要进行采样、量化、编码等转换过程,相应的成本就会更高。 4. 按照敏感材料不同 新类型传感器的开发从某种意义上讲就是对传感器材料的开发。在传感器的开发过程中,通常会先从传感器的敏感材料入手,例如: 挖掘现有材料的新效应、新现象或新反应; 随着新材料的问世,重新利用早期发现的各种效应、现象或反应; 伴随新材料的出现,利用新发现的各种新效应、新现象或新反应。 确定了前端的敏感材料,才可以继续推进后续的构型设计及生产。 1) 金属类材料 金属类材料传感器是一种利用金属材料的电学特性及其各种物理、化学效应实现非电量转换为电量的固态元件。金属材料包括铜、铝、铁等常见金属和铂、镍等贵金属。 金属材料具有良好的导电性能和敏感性能,同时也具有较高的强度和韧性等优点。金属材料可以实现多种效应,如电阻效应、热电效应、霍尔效应等。金属类材料常用于制作热敏电阻和热电偶等传感器,还可以用于制作压力传感器、形变传感器等。 2) 半导体材料 半导体材料传感器是一种利用半导体材料的固态物理特性及其各种物理、化学效应实现非电量转换为电量的固态元件。半导体材料包括硅、锗、镓砷等。 半导体材料具有良好的敏感性、灵敏度和响应速度,同时也具有小型化、集成化和低功耗等优点。半导体材料可以实现多种效应,如压阻效应、霍尔效应、光电效应、热电效应等。因此,半导体材料传感器可以用于测量温度、压力、流量、位移、力、扭矩、加速度、磁场、光强等多种参数。 3) 陶瓷类材料 陶瓷类材料传感器是一种利用陶瓷材料的电学特性及其各种物理、化学效应实现非电量转换为电量的固态元件。陶瓷材料包括氧化物陶瓷(如氧化铝)、氮化物陶瓷(如氮化硅)、碳化物陶瓷(如碳化硅)等。 陶瓷材料具有良好的稳定性、耐高温性和耐腐蚀性,同时也具有高强度和高硬度等优点。陶瓷材料可以实现多种效应,如压电效应、热电效应、磁电效应、电阻效应等。陶瓷材料常用于制作压力传感器、湿度传感器和氧气传感器等。 4) 高分子类材料 高分子类材料传感器是一种利用高分子材料的电学特性及其各种物理、化学效应实现非电量转换为电量的固态元件。高分子材料包括有机高分子材料(如聚苯乙烯)、无机高分子材料(如聚合物基复合材料)等。 高分子材料具有良好的可塑性和可加工性,同时也具有低成本和可生物降解等优点。高分子类材料常用于制作应力、形变、湿度、温度和气体浓度等传感器,其在柔性传感器上的应用也存在广阔前景。 5. 按照转换原理不同 通过使用不同敏感材料或差异化的电路设计,利用不同的转换原理,也可以得到不同性能的传感器。一般来说,即使是针对同一检测变量,不同转换原理的传感器之间依然存在较高的技术壁垒,且对应不同的易用场景,使得细分市场进一步被分割。 1) 电阻式传感器 是一种利用电阻元件的电阻值随着温度、压力、应变等因素变化而变化的原理,将非电量转换为电量的传感器。例如,温度敏电阻(RTD)和压阻式应变计(SG)等。 2) 电容式传感器 是一种利用电容元件的电容值随着距离、介质、湿度等因素变化而变化的原理,将非电量转换为电量的传感器。例如,电容式位移传感器和电容式湿度传感器等。 3) 电感式传感器 是一种利用电感元件的自感或互感随着位移、速度、磁场等因素变化而变化的原理,将非电量转换为电量的传感器。例如,线圈式位移传感器和差动变压器(LVDT)等。 4) 光电式传感器 是一种利用光源和光敏元件之间的光强或光波长随着位移、速度、颜色等因素变化而变化的原理,将非电量转换为电量的传感器。例如,光敏二极管(PD)和光敏三极管(PT)等。 5) 光栅式传感器 是一种利用光栅和光敏元件之间的干涉条纹随着位移或角度变化而变化的原理,将非电量转换为数字量的传感器。例如,光栅尺和光栅编码器等。 6) 压电式传感器 是一种利用某些材料在受到压力或振动时,在其两端产生一个与之成正比的电压的原理,将非电量转换为电量的传感器。例如,压电陶瓷和压电石英晶体等。 6. 小结 对于传感器投资来说,传感器的分类是第一步。明确了传感器的分类,才能清晰地对行业格局进行梳理分析。 传感器的分类方式繁多,不同分类方式又互相交叉,又存在明显的差异,导致行业格局划分极其细分。 例如有的企业专门做车规级的陀螺仪,有的专门做消费级的陀螺仪,虽然两种企业的技术能力有交叉,但是车规级更关注可靠性,消费级更关注低成本、大规模量产,同一个企业想把两种产品同时做好难度较大。这使得大多数细分领域的天花板都较为有限,小则可能几个亿的市场规模,多则可能上百亿的市场规模,多数在几十亿的市场空间。 以上行业特征导致传感器行业的投资逻辑存在一定特殊性。不同于传统互联网以及现在人工智能、大芯片等大行业的投资逻辑,传感器各细分市场的割裂度更高,且发展变化的速度相对没那么快,更容易培养出小而美的企业。 对于投资机构来说,选择深耕于传感器行业,需要更强的资源和能力支持,更需要建立起对行业的深度认知,尽可能去解决小众行业中更严重的信息不对称问题。只有提前捕捉到行业的变化,才能提高投资决策的准确性。这样才能在早期阶段完成投资布局,即使被投企业未来只能成长为小而美的企业,那也有望获得可观的投资收益。 六、传感器的产业链情况 作为一种成熟的电子元器件,传感器已经形成了较清晰的产业链。 上游主要包括各类传感器制造所需原材料、生产设备、设计软件的供应,常规材料包括半导体材料、陶瓷材料、金属材料以及高分子类材料等,常规设备包括各类半导体工艺设备、封装测试设备等。 中游主要是各类传感器的加工制造和封装测试等。传感器种类繁多,每种传感器对应的工艺存在不同,一般来说包括敏感元件本体的加工、信号输出电路的连接、整体传感器系统的封装以及后续的标定和测试。 下游主要是各类应用场景,客户根据自己的性能、成本要求选择对应的传感器,集成到对应的终端设备中去,并进行相应的性能优化和功能实现。 例如,以MEMS压力传感器为例: 压力传感器的核心部件是压力芯片,最常见的是利用半导体材料的压阻效应来测量压力的。压力芯片的加工采用硅晶片,利用光刻技术、腐蚀技术、扩散注入离子技术等,制造出压力芯片。 压力传感器的封装部件是弹性体,它是用来承受外界压力并将其传递给压力芯片的。弹性体的制作包括弹性体钢杯的结构设计与机械加工、去应力热处理、研磨抛光等过程。 压力传感器的电路部件是电阻膜和引线膜,它们是用来形成惠斯登电桥和连接电气引脚的。电阻膜和引线膜的制作采用离子束溅射淀积技术,在金属弹性体表面制造粘附力强、膜层均匀、致密、性能稳定的多层薄膜,并采用半导体光刻和腐蚀或者离子束刻蚀工艺将其刻蚀成所需图形。 压力传感器的组装部件是粘片、金丝球焊和膜片焊接,它们是用来将压力芯片、弹性体和电路部件连接成一个完整的传感器单元的。粘片是将压力芯片和烧结基座、绝缘垫和烧结基座粘接在一起;金丝球焊是将芯片的电气引脚与烧结基座的电气引脚连接起来;膜片焊接是将感压膜片和烧结基座焊接在一起。 压力传感器的后处理部件是充油、密封、压力冲击、老化、补偿测试、调阻和检验等,它们是用来提高传感器的可靠性、稳定性和准确性的。充油是在传感器内部注入油液,以保护压力芯片和提高灵敏度;密封是在传感器外部加上保护罩或胶水,以防止外界环境对传感器造成干扰;压力冲击是对传感器施加高低交变压力,以消除残余应力;老化是对传感器进行长时间稳定工作,以消除初始漂移;补偿测试是对传感器进行温度、线性、灵敏度等方面的测试,以确定其性能参数;调阻是对传感器的电阻进行微调,以达到最佳的输出电压;检验是对传感器进行最终的质量检查,以确保其符合标准。 传感器的产业链主要受上游材料类型影响。上游材料不同,对应的生产制造工艺也存在明显区别,导致产业链的构成上存在明显差异。由于不同类型传感器的材料和工艺的存在明显区别,传感器厂商往往更倾向于IDM(Integrated Design and Manufacture,垂直整合制造)的生产经营模式,即自己全面负责产品的设计、生产和测试,对于某些更特殊类型的传感器,甚至上游材料的生产和加工都需要由企业自己完成。 与其他类型的传感器相比,半导体传感器在生产过程中工艺相通点更多,且与传统半导体工艺大量重合,因此也逐渐形成与传统半导体行业类似的产业链,诞生了专门的传感器设计厂商(即Fabless)、晶圆代工厂(即Foundry)和芯片封装厂。 我们将主要关注半导体传感器的产业链,其现在是、在未来可见的数十年内也依然会是最重要的传感器类型。 以下主要分析MEMS半导体传感器产业链的核心环节。 1、 上游:材料 与芯片类似,MEMS传感器的基础材料是Si晶圆。一些特殊应用会使用玻璃、高分子聚合物、金属等,二氧化钛(TiO2)、二氧化锡(SnO2)和氧化锌(ZnO)等金属氧化物也逐渐成为有吸引力的材料。 另外,MEMS传感器开始更多使用基于Si的SOI晶圆。SOI是Silicon On Insulator的缩写,是指在氧化膜上形成了单晶硅层的硅晶圆。在MEMS中可以使用氧化膜层作为硅蚀刻的阻挡层,因此能够形成复杂的三维立体结构,实现对应的功能。 2、上游:设计及仿真软件 MEMS传感器的设计是多层次和跨领域的,存在极高的难度。为了解决这些问题,商业化的设计及仿真软件出现,其显著提升了设计人员的工作效率:(1)有助于设计人员理解微小范围内的力、热、电磁等能量之间的相互作用,方便在虚拟设计阶段优化MEMS结构和工艺,减少试制和测试成本;(2)使用成熟pdk(工艺设计套件)和工艺,缩短设计周期,增强市场竞争力。 MEMS所需要的建模和仿真相应自上向下的设计方法可以分为三个不同的层次。 工艺模拟:目的是通过建立每一步的物理模型,采用合适的数值算法,模拟出MEMS的拓扑结构; 器件模拟:工艺模拟得到MEMS器件结构,根据其工作原理,建立相应的方程,通过有限元、边界源和差分方法模拟出MEMS器件的性能; 宏模型与系统级模拟:系统级模拟要求MEMS器件的模型简单,且能反映器件的材料特性和几何特征。 目前MEMS设计仿真软件基本被海外厂商垄断,主要包括TannerPro,Ansoft HFSS,CoventorWare,ANSYS,IntelliSense等。 3、上游:生产设备 MEMS传感器的生产工艺与半导体工艺类似,因此需要的生产设备也基本相通: 光刻设备:光刻设备是用于在硅片或其他衬底上形成所需的图案的设备,主要包括光刻机、光掩模、光阻涂布机、曝光机、显影机等。光刻设备的功能是将设计好的传感器结构转换为可见的图形,为后续的刻蚀和沉积工艺提供基础。光刻设备的主要生产厂商有荷兰的阿斯麦(ASML)等。 刻蚀设备:刻蚀设备是用于去除多余的材料,形成所需的微结构的设备,主要包括湿法刻蚀设备(如酸碱槽)、干法刻蚀设备(如反应离子刻蚀机)、深反应离子刻蚀机(DRIE)等。刻蚀设备的功能是将光刻后的图形转换为实际的三维结构,为传感器提供所需的功能和性能。刻蚀设备的主要生产厂商有美国的泛林半导体(Lam Research)、美国的应用材料(Applied Materials)等。 沉积设备:沉积设备是用于在硅片或其他衬底上沉积所需的材料,形成所需的层或膜的设备,主要包括物理气相沉积设备(如溅射机)、化学气相沉积设备(如等离子体增强化学气相沉积机)、原子层沉积设备(ALD)等。沉积设备的功能是在传感器结构上添加所需的材料,以提供所需的电学、力学、热学等特性。沉积设备的主要生产厂商包括美国的应用材料(Applied Materials)、美国的泛林半导体(Lam Research)和日本的东京电子(TEL)等。
封装设备:封装设备是用于将传感器芯片与外部电路连接,并封装在外壳中,以保护传感器免受环境影响的设备,主要包括键合机、焊接机、注塑机、封胶机等。封装设备的功能是将制作好的传感器芯片与外部电路连接,并提供适当的接口和保护措施,以保证传感器正常工作和使用寿命。封装设备的典型供应商包括日本川崎(KAWASAKI)、美国的太平洋科技(ASM Pacific)等。 测试设备:测试设备是用于对传感器进行功能和性能的测试的设备,主要包括电参数测试仪、力学参数测试仪、温度参数测试仪、环境参数测试仪等。测试设备的功能是对封装好的传感器进行各种参数的测量和校准,以检验其是否符合设计规范和质量标准。测试设备的主要生产厂商有美国的安捷伦(Agilent)、美国的泰克(Tektronix)、日本的安立(Anritsu)等。 4、中游:设计 MEMS传感器的设计一般包括系统级设计、器件级设计和工艺级设计三层。 系统级设计面向用户的需求,研究的对象是由MEMS器件与信号提取、信号反馈等相关电子电路组成的微系统,着重研究系统的整体行为特性与性能,承担产品概念设计与设计方案制定等设计任务,为器件级设计提供依据。 器件级设计是根据MEMS器件的实体模型来研究其行为特性和物理特性,完成MEMS器件的实体设计、分析和优化,为器件的工艺、版图设计奠定基础,并且从中提取器件的行为模型,进一步进行系统级的行为仿真,以验证设计方案。 工艺级设计主要包括器件的掩模版图设计和工艺流程设计,是MEMS器件加工前的最后一步,其主要任务包括基于实体模型的工艺定义,基于实体的版图生成以及加工工艺仿真。
每一个设计环节都对传感器的最终性能有显著影响。得益于设计仿真软件的成熟以及专业代工模式的发展,设计环节得以有独立存在的可能。 我们定义的传感器厂商,其基础是有设计能力,其他环节则可以交由产业链的其他环节去完成。同一技术路线下不同传感器厂商之间的区别主要在于材料和结构设计的不同,不仅可以通过专利去保护,而且也很难被逆向工程出来,其中存在大量的know-how,每一个细小的环节都会影响到最终的性能表现。 5、中游:加工制造 MEMS传感器的加工工艺可依据材料分为硅基和非硅基两种路线。硅基MEMS加工技术以集成电路加工技术为基础,具有批量化、成本低、集成度高等优势;非硅基加工技术包括LIGA、准LIGA(即X光同步辐射光刻、电铸成型及注塑工艺)和精密加工技术,非硅基加工技术实现的可动微结构能够拥有更大纵向尺寸,但批量能力差、重复性差、加工成本高。 随着加工工艺逐渐成熟稳定,专业的半导体代工厂也开始进入MEMS代工方向。这其中既有帮助早期企业进行技术验证的研发线(也可称为中试线,不适合于量产),也有帮助企业进行大规模生产的量产线。量产线中既有台积电、中芯国际的传统半导体代工厂,也有赛微电子等专业从事MEMS传感器代工的厂商。 值得一提的是,大多数半导体传感器只需要成熟的制程即可以完成生产,例如只需要90nm、180nm节点,只需要8寸晶圆,使用更高规格的工艺节点不一定会带来性价比的提升,这与高性能计算芯片存在显著不同。 在高性能计算芯片上,得益于物理层面的优势,5nm、7nm芯片的性价比显著高于28nm,因此也使得光刻机成为摆在制造前面的第一道门槛。而传感器所需的成熟制程对光刻机的精度要求小一个量级,因为其关键点在于微机械结构的搭建,而微机械结构不一定因为体积越小就会性能更好,在性能和体积之间一般存在一个平衡点。 MEMS传感器特殊工艺的第一个好处是基本不会受到半导体设备禁运的影响,其生产的难点主要在于各种特殊加工工艺;第二个好处是建设和运营一条产线所需投入的固定成本较低,建设一个12寸晶圆厂最少需要投入数十亿元,而建设一个8寸晶圆厂只需要几亿元。 也正是因为这个原因,当半导体传感器厂商发展到较大规模后,例如销售规模达到过亿美元时,一般会倾向于自建部分产能,形成“核心产品依靠IDM,边缘产品或产能调节依靠代工厂”的生产模式,既可以降低生产成本,又可以加固技术壁垒。 6、中游:封装 封装是MEMS研发过程的重要环节,其决定了MEMS 传感器的体积、可靠性以及成本。根据 Yole 的研究,目前MEMS传感器成本中,封装约占 30%~40%,IC 约占 40%~50%,足以体现封装的重要性。 由于结构和应用环境的不同,传感器的封装过程与传统集成电路也存在明显不同。MEMS封装建立在IC封装基础之上,并衍生出新的封装技术和工艺,例如阳极键合、硅熔融键合、硅通孔(TSV)、玻璃通孔(TGV)等,进而反哺IC封装。 MEMS的封装过程的主要挑战在于不同应用场景下封装的要求显著不同,例如消费类应用需要低成本封装,汽车和航空行业需要耐高温和抗恶劣气候的高可靠性封装,裸露在大气环境下需要的开放式封装,以及需要抽真空的密闭式封装等等。而IC器件的工作环境通常较好,一般在常温、常压下。 MEMS封装可以分为芯片级封装、器件级封装、系统级封装三个层级,各级别封装在技术层面相互关联,具体应用需要根据“可制造性、成本、功能”进行权衡。从产业链分工来看,不同层级的封装可能是由不同的厂商完成。例如有的fabless厂商会委托专业的封装厂完成芯片级封装、器件级封装,自己或者交给下游终端厂商完成系统级封装。 7、中游:测试 由于封装占整个系统的成本较高,因此使得MEMS传感器的测试也较传统集成电路更为复杂。在最终封装之后测出器件失效不但费钱,还浪费了R&D、工艺过程和代工时间,因此晶圆级测试的重要性更为凸显。 MEMS产品开发生命周期的三个阶段都有其独特的测试目标和对测试结果的不同要求。 产品R&D阶段:验证器件可以工作和可以生产。在这一阶段,采用晶圆级测试可以获得早期器件特征,降低开发时间和成本。 产品试量产阶段:验证器件以较高成品率量产的能力,开发出可量产的设备方案以及用于量产的测试方案。通过采用晶圆级测试可以降低开发时间和成本。 量产阶段:最大化吞吐量和降低成本。由于一般MEMS产品的成品率比IC产品要低很多,晶圆级测试可以极大地降低MEMS量产产品的封装成本。封装后进行成品测试,筛选不良产品,确保上市产品性能良好。 晶圆级测试对传感器厂商来说实现难度较高,或者投入较大,一般可以交给代工厂完成。不过封装后的标定和测试一般由传感器厂商自己完成,这是由于传感器厂商对传感器的各种性能表现和调教有更深刻的理解,甚至很多厂商会自己开发专门的测试设备,以进一步提高测试效率。
七、市场情况 根据Statista,2022年全球传感器市场规模为2512.9亿美元(约1.79万亿人民币)。受疫情影响,全球传感器市场经历了大幅波动。2020、2021和2022年同比增速分别为-13%、62%、10%。相比之下,中国市场增速相对稳定,3年增速分别为14%、20%、19%,维持在20%上下。整体来看,中国市场占全球传感器市场的比例维持在20%上下。 从细分市场来看,全球传感器市场可以按照应用领域分为汽车、工业、消费电子、医疗、通信、安防六大细分市场,具体占比都在15-25%之间波动。我们认为,未来这几个主要的细分市场中,均存在广泛的机会,这里主要以汽车、工业、医疗和消费电子为代表介绍。 1、 汽车传感器 汽车上的传感器有很多种,主要分为车身感知传感器和环境感知传感器两大类。 车身感知传感器提高了单车自身的信息化水平,使车辆具备感知自身的能力;按照输入的被测量不同主要分为压力传感器、位置传感器、温度传感器、加速度传感器、角速度传感器、流量传感器、气体浓度传感器和液位传感器等。 压力传感器:用于测量汽车轮胎的气压,发动机的进气压力和排气压力,制动系统的液压压力等。 位置传感器:用于测量汽车油门踏板的位置,转向角度,变速箱的档位,发动机曲轴和凸轮轴的转速和相位等。 温度传感器:用于测量汽车发动机冷却液的温度,空调系统的温度,排气温度等。 加速度和角速度传感器:用于检测汽车的运动状态,如加速度,减速度,侧倾角,横摆角等。也用于安全气囊的触发和电子稳定程序(ESP)的控制。 空气流量和气体浓度传感器:用于测量进入发动机的空气流量和含氧量,以调节燃油喷射量和点火时刻。也用于检测排放控制系统的效果和排放污染物的含量。 液位传感器:用于测量汽车油箱内的燃油液位,制动液液位等。 环境感知传感器是无人驾驶车辆的“眼睛”。目前应用于环境感知的主流传感器产品主要包括激光雷达、毫米波雷达、超声波雷达和摄像头四类,红外成像也表现出巨大的应用潜力。 激光雷达:用于扫描汽车周围的环境,生成高精度的三维点云地图。可用于无人驾驶系统中进行障碍物检测,道路识别,导航规划等。 毫米波雷达:用于探测汽车前方或后方的障碍物或其他车辆的距离和相对速度。可用于自适应巡航控制(ACC),自动紧急制动(AEB),盲点监测(BSD),变道辅助(LCA)等驾驶辅助功能中。 超声波雷达:用于探测汽车周围近距离内的障碍物或停车位。可用于倒车雷达(PDC),自动泊车(APA),行人检测(PD)等ADAS中。 摄像头:用于捕捉汽车周围的图像信息。可用于行人识别(PR),交通标志识别(TSR),道路线识别(LDW),自适应远近光灯(AFS)等ADAS中。 新能源汽车的渗透率提升以及自动驾驶技术的发展,带来了汽车传感器市场的变革。例如,液位传感器、发动机压力传感器的市场规模正在持续缩小,而与电动化相关的传感器(如电池监测系统、电流传感器等)、自动驾驶相关的环境感知传感器则正进入发展的快车道。 根据分析机构预估,全球激光雷达市场将从2022年的3.17亿美元在2028年增长到44.77亿美元(来源于Yole),全球毫米波雷达市场将从2023年的45.09亿美元在2027年增长到近90亿美元(来源于ICV),全球车载摄像头的市场将从2022年的204亿美元在2026年增长到355亿美元(来源于ICV)。 这两类传感器的市场格局也存在较大的差异: 在传统的车身感知传感器类别中,全球汽车传感器90%以上的市场份额被博世、德尔福、森萨塔、霍尼韦尔等国际零部件巨头瓜分。中国的汽车传感器产品与国外同类产品相比,技术水平相差较大,高端汽车传感器严重依赖进口。国内美泰科技、美芯半导体、昆山双桥等企业均在积极布局汽车电子领域,并取得一定进展。 但国内汽车传感器整体技术水平还相对较弱,普遍存在准确度低、分解能力差、信号精度不高、抗干扰性弱等问题。未来随着国产传感器厂商技术的进步和车厂对国产化的进一步要求,行业内厂商依然有很大的机会。 在新兴的环境感知传感器类别中,国内企业和国际巨头的差距更小一些。例如在激光雷达传感器上,得益于下游车厂的激进竞争策略,以禾赛为代表的国产激光雷达厂商已经实现规模出货,在出货量上遥遥领先。 根据国际权威研究机构Yole Group最新发布的《2023年全球车载激光雷达市场与技术报告》,2022年,禾赛以近50%的市场份额连续两年稳居全球车载激光雷达总营收榜首,并且其市场份额从2021年的42%进一步扩大至47%。图达通则依靠蔚来汽车的持续出货,以15%的市场份额夺得第二名,法雷奥、速腾聚创分别以13%、9%的市场份额位列第三、第四。 在毫米波雷达上,国内已经涌现出众多雷达终端厂商,已经开始在对安全性要求较低的角雷达上实现快速替代,在前向雷达、4D成像雷达的进展上也逐渐逼近国际巨头。在毫米波雷达核心芯片上,也已经涌现出多家初创公司,包括加特兰、牧野微等。随着芯片厂商的崛起,将逐步形成基于国内厂商的雷达生态圈。 在超声波雷达和摄像头上,国内厂商基本已经可以与国际厂商持平,代表性厂商有奥迪威(超声波雷达)和韦尔股份(摄像头),已经很难有初创公司的机会。 2、工业传感器 工业传感器实现了监测、控制、报警、数据采集、智能化、定位和质量控制等功能。它们能够准确测量物理量和参数,实现自动化的控制和调节,监测危险情况并触发报警系统,采集和分析数据,实现智能化决策和学习,进行定位和追踪,并用于质量控制和检测。这些功能使其在制造、能源、物流、环境监测等领域发挥重要作用。 当前常用的工业传感器主要包括以下几种: 温度传感器:用于测量物体或环境的温度,工业中常用于监测和控制流程中的温度,例如冷却系统、热处理、加热设备等。
压力传感器:用于测量物体或介质的压力,工业中常用于监测和控制流体或气体系统的压力,例如供水系统、液压系统、气体储存和输送等。 流量传感器:用于测量液体或气体的流量速度,工业中常用于流体控制、供应链管理、能源监测等领域。 液位传感器:用于测量液体的高度或深度,工业中常用于储罐、水池、河流和管道等液体储存和输送系统中,以监测和控制液位变化。 湿度传感器:用于测量环境中的湿度水分含量,工业中常用于监测和控制空调、制冷设备、温室和干燥室等环境湿度。 光电传感器:用于检测光线的存在、强度和位置,工业中常用于自动化生产线、物料检测、机器人导航等应用。 加速度传感器:用于测量物体的加速度或振动,工业中常用于故障诊断、结构监测和机器运行状态监测等。 磁力传感器:用于测量磁场的强度或方向,工业中常用于位置检测、接近开关、电机控制等应用。 气体传感器:用于检测空气中特定气体的浓度,工业中常用于环境监测、室内空气质量监测、气体泄漏检测等。 未来随着工业互联网和生产智能化的进一步发展,工业传感器的市场将保持稳定增长。根据MarketsandMarkets的报告数据显示,全球工业传感器市场规模预计将从2021年的206亿美元增长到2026年的319亿美元,复合增长率达到9.1%。 从市场格局来看,国际领先的工业传感器企业起步较早,积累了丰富的技术和生产经验。相较而言,我国工业传感器产业起步较晚,国内大多数工业传感器企业处于中低端领域市场,相较于国外巨头的研究能力不足,技术基础较为薄弱。在高端工业传感领域,90%产品依赖进口。 近年来,由于国产厂商产品技术进步以及交货周期更短等原因,2017年以来本土工业传感器市场份额呈现持续提升趋势,未来本土工业传感器产品拥有广阔的国产替代空间。 3、医疗传感器 医疗传感器被用于辅助诊断、实时监测患者的生命体征、评估疾病状况、康复训练等,从而提高医疗质量、提供个性化的医疗护理和改善患者体验。 根据测量的变量和在医疗领域内实现的功能,医疗传感器可以分为以下几类: 生理参数传感器:用于测量人体生理参数,如心率、血压、体温、呼吸等,广泛应用于医院、急诊、手术室以及家庭医疗设备。 血液参数传感器:用于测量血液中的各种成分和指标,如血糖、血氧饱和度、血红蛋白浓度等,常用于糖尿病管理、心血管疾病监测和手术过程中的血氧监测。 运动参数传感器:用于测量身体运动和姿势,如加速度计、陀螺仪等,常用于运动医学、康复治疗和姿势监测。 图像传感器:用于捕捉和处理图像信息,如X射线、超声波和光学传感器,在医学影像领域中用于诊断和监测疾病,如X射线断层扫描(CT)、核磁共振成像(MRI)和超声波检查。 化学传感器:用于检测生物体内的化学成分和分子指标,如药物浓度、电解质浓度等,常用于药物监测、血液分析和疾病诊断。 医疗传感器的主要市场在于医疗设备。医疗仪器设备领域是一个万亿元的大市场,医疗领域的传感器应用比例也大幅增长,给传感器企业带来相当大的机遇。例如,之前因为疫情导致了医疗设备呼吸机的紧缺,带来了流量传感器、压力传感器、温湿度传感器等几大类传感器的需求。对于制造此类传感器的厂商来说,便是将自家优质的传感器推向医疗市场的机会。 但是,传感器的性能和质量都会直接关系到医疗设备的可靠性,具有高重复性、高精确度和高可靠性的传感器生产技术主要掌握在国外企业手里,例如霍尼韦尔、罗姆、泰科等。 国产传感器的精度和可靠性与国际一流供应商相比,产品性能还有较大的提升空间,考虑到医疗行业的高要求、严标准,只会选择虽然价格更高但品质一流的国外品牌,国产传感器几乎没有太多市场份额。因此,长远来看,国内传感器企业想要进入医疗行业还面临诸多挑战,而且需要国内医疗设备厂商的主动导入。 相较于汽车传感器和工业传感器市场,医疗传感器也存在更多的新型技术的机会,例如实现通过传感器的小型化和低成本实现高端医疗检测设备的日常化,市场逻辑将更偏向于消费电子领域,能够实现该种技术突破的企业将更有可能迎来爆发式的收入增长。 4、消费电子传感器 消费电子传感器的应用使得消费电子设备更加智能化、便捷和个性化,提供了丰富的交互和体验方式,以满足用户的各种需求和期望,如今智能手机、智能手表等设备中集成传感器数量不断增加,被期待成为下一代交互终端的“AR眼镜”、“VR眼镜”更是离不开各类传感器的支持。 当前常用的消费电子传感器主要包括以下几种: 触摸传感器:用于测量人体接触或靠近感应面的触摸动作和参数。在消费电子中,触摸传感器常用于智能手机、平板电脑、触摸屏显示器、游戏控制器等,实现触摸输入、手势识别、指纹识别等功能。 图像传感器:用于捕捉光学图像。在消费电子中,图像传感器常用于图像和视频的捕捉、识别和分析,以实现照片拍摄、视频录制、人脸识别、手势识别和环境感知等功能。 声音传感器:用于测量声音或声波。在消费电子中,声音传感器常用于声音录制、语音识别、噪音检测、声音分析和声音定位等功能,为消费电子设备提供了声音相关的感知、交互和控制能力。 加速度传感器:用于测量物体的加速度和倾斜角度。在消费电子中,加速度传感器常用于屏幕旋转、运动检测、手势识别等功能。 陀螺仪传感器:用于测量物体的旋转和角速度。在消费电子中,陀螺仪传感器常用于虚拟现实(VR)和增强现实(AR)设备、游戏控制器、图像稳定等应用。 磁力传感器:用于测量磁场的强度和方向。在消费电子中,磁力传感器常用于指南针、地理定位、翻盖手机的屏幕关闭等功能。 光传感器:用于测量光的强度和亮度。在消费电子中,光传感器常用于环境亮度调节、光线感应开关、屏幕亮度调节等功能。 温度传感器:用于测量环境或设备的温度。在消费电子中,温度传感器常用于电池温度监测、温控设备、电子温度计等应用。 湿度传感器:用于测量环境的湿度水分含量。在消费电子中,湿度传感器常用于空调、加湿器、智能家居等应用。 气压传感器:用于测量大气压力。在消费电子中,气压传感器常用于气压计、高度计、室内定位等应用。 距离传感器:用于测量物体和障碍物的距离。在消费电子中,距离传感器常用于触摸屏、近场通信、障碍物检测等功能。 心率传感器:用于测量人体的心率。在消费电子中,心率传感器常用于智能手环、智能手表、健康监测设备等应用。 根据Research and Markets预测,全球消费电子传感器市场规模将从2022年的328亿美元到2030年增长到763亿美元,复合增长率达到11.1%。 我们认为,由于消费电子市场的特殊性,其发展的波动性会较其他市场更为显著,正如过去一年发生的那样,但是消费电子市场更容易出现爆发性的增长机会。例如,iPhone引领智能手机浪潮曾带动消费电子传感器市场迎来一次跳跃式增长,未来被寄予成为下一代移动终端的AR/VR眼镜同样将为市场带来巨大变化。 从市场格局看,全球消费电子市场主要由国际巨头企业把控,其中包括:惯性传感器龙头博世、意法半导体等;音频传感器巨头楼氏电子等;CMOS图像传感器巨头索尼等。 中国本土企业近年发展较快,但由于起步晚、技术积累弱等因素,整体仍存在企业规模较小、产品线单一、解决方案供给能力弱等问题。 另外,近年来消费电子传感器的竞争已经逐渐趋向红海,一旦有某国内厂商突破了某类传感器的技术壁垒、打开被国际巨头垄断的市场,多数时候其他国内同类厂商均能够快速跟进,由于消费电子是对成本极其敏感的市场,随后市场就走向恶性竞争。这其中很大一部分原因是对知识产权的保护力度不足,导致消费电子传感器厂商普遍毛利较低,且容易到市场瓶颈。 消费电子传感器的主要机会在于还未被市场验证、具有显著创新性的传感器,在开发阶段便和下游厂商共同合作,建立起深入的关系绑定和显著的技术壁垒,并率先实现低成本量产,才能够最大可能避免后续的恶性竞争。
八、投资思考
前文提到,传感器行业细分领域众多且割裂,更容易孵化出小而美的企业。
因此对于选择传感器赛道布局的投资者来说,其不得不面对一个问题:如何选择其中最具投资价值的赛道,在有限的精力下实现最高的效率?
我们认为,围绕以下三条主线进行梳理,基本能够覆盖当下传感器行业最具价值的投资赛道。
1.从电磁波图谱看传感器
电磁波是由变化的电场和磁场相互感生而产生的波,它们可以在真空或介质中以光速传播。电磁波的频率和波长是反比关系,即频率越高,波长越短。
电磁波主要被用于信号和能量的传输,其频率和波长决定了它们的物理性质和应用领域。根据不同的频率或波长,电磁波可以分为以下几个主要的频段:
无线电波:频率从3Hz到3000GHz,波长从100km到0.1mm。无线电波主要用于各种无线通信和广播应用,如收音机、电视、手机、卫星、雷达等。无线电波又可以细分为以下几个子频段:
长波(LF):频率从3kHz到30kHz,波长从100km到10km。长波可以沿着地球表面传播(地波),适用于远距离通信,如海洋导航、潜艇通信等。
中波(MF):频率从30kHz到300kHz,波长从10km到1km。中波也可以沿着地球表面传播(地波),适用于中距离通信,如调幅广播(AM)、航空导航等。
短波(HF):频率从3MHz到30MHz,波长从100m到10m。短波可以被大气层中的电离层反射回地面(天波),适用于长距离通信,如国际广播、业余无线电、军事通信等。
超短波(VHF):频率从30MHz到300MHz,波长从10m到1m。超短波主要沿着直线传播(视距传播),适用于近距离通信,如调频广播(FM)、数字电视、移动电话等。
微波(UHF):频率从300MHz到300GHz,波长从1m到1mm。微波也主要沿着直线传播(视距传播),适用于高速数据传输和高清图像传输,如雷达、卫星通信、GPS、Wi-Fi、蓝牙、5G等。
红外线:频率从300GHz到400THz,波长从1mm到750nm。红外线是由物体发出的热辐射,适用于热成像、遥控、夜视、光纤通信等。
可见光:频率从400THz到750THz,波长从750nm到400nm。可见光是人眼能够感知的电磁辐射,适用于光学仪器、激光、太阳能等。
紫外线:频率从750THz到30PHz,波长从400nm到10nm。紫外线是由太阳或其他高温物体发出的高能辐射,适用于杀菌消毒、荧光检测、紫外光谱等。
X射线:频率从30PHz到30EHz,波长从10nm到0.01nm。X射线是由高速电子与物质相互作用产生的高能辐射,适用于医学诊断、工业检测、安检等。
伽马射线:频率高于30EHz,波长小于0.01nm。伽马射线是由原子核衰变或核反应产生的最高能的电磁辐射,适用于医学治疗、核能利用、天文观测等。
电磁波在实际应用时离不开传感器,只有依赖于传感器,电磁波信号才能被转化成人类可以理解的信息。与电磁波相关的传感器占据了整个传感器市场的半壁江山,这其中主要是光电传感器和微波探测传感器。
1) 光电传感器
光电传感器是传感器中单一市场规模最大的细分方向,接收红外线、可见光、紫外线、X射线的探测器均可以统一划分至这个方向,整体市场规模在千亿元量级,这也是其受到关注的主要原因。其中主要包括:
红外探测器,主要的应用场景包括热成像、光通信、激光雷达等。
可见光探测器,即图像传感器,最主要的应用场景是各类可见光成像,广泛应用于摄影摄像、监控安防、机器视觉等。
紫外线及X射线探测器,主要应用于各种医疗和工业场景。
2) 微波探测传感器
严格意义上的微波探测传感器是指微波雷达,即通过发射微波信号并接收反射信号进行探测的传感器,常见的包括有军工探测雷达、气象雷达、车载毫米波雷达、路测感知雷达、智能家居感知雷达等。宽泛意义上的微波探测传感器也可以包括各类微波通信模组,微波通信本质上就是发射/接收微波信号并将其转换成信息的过程,因此包括于5G、WiFi、卫星通信等等均可以计入其中。
微波探测传感器的投资机会可以覆盖整个产业链,包括前端射频天线、射频芯片器件、基带芯片、整机系统、测试设备、设计及仿真软件等。从细分市场来看,传统通信的市场机会已经不大,未来更多机会在于民用雷达、小基站、卫星通信市场。
3) 投资方向思考
值得关注的具体方向可以用以下三个关键词来总结:
2. 从MEMS工艺看传感器
1) MEMS传感器简介
MEMS传感器是指采用微电子和微机械加工技术制造出来的新型传感器,其全称是微型电子机械系统(Micro-Electro Mechanical System),微机电系统是指可批量制作的,将微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等集成于一块或多块芯片上的微型器件或系统。
从理论上说,MEMS只是一种传感器的工艺实现方式,多数类型的传统传感器通过专门的结构设计,实现MEMS化。
MEMS传感器一般具有以下特点:
微型化:MEMS传感器的尺寸在1微米到100微米量级,可以大大节省空间和材料,提高灵敏度和响应速度。
集成化:MEMS传感器可以将多种功能集成在同一芯片上,实现多参数检测和智能控制,提高系统性能和可靠性。
智能化:MEMS传感器可以实现自校准、自诊断、自适应等功能,提高系统的智能水平和用户体验。
成本低:MEMS传感器可以利用成熟的半导体工艺进行批量生产,降低生产成本和单价,提高市场竞争力。
效能高:MEMS传感器可以实现高精度、高稳定性、高分辨率、低功耗、低噪声等优良性能,满足各种应用需求。
根据统计,MEMS传感器的全球市场规模预计会从2020年的90亿美元提升至2026年的128亿美元,年均复合增长率为6.1%。对应的,国内市场规模约占全球市场的30%-40%,当前对应约从250亿元增长到约400亿元人民币。如果考虑到模组的价值,那这一数字将超过千亿元人民币。
2) 投资方向思考
随着国内厂商技术的进步,“国产替代”的趋势日益明显,中低端传感器的国产化率逐渐提升,MEMS传感器的投资机会也在发生转变。
第一,关注竞争格局尚不确定的细分行业,本质上还是关注于“国产替代”。当细分行业已经孵化出龙头公司后,业内其他公司的存活将更加艰难,龙头公司在技术、资金和客户关系的同时加持下,横向扩展和纵向扩展均具有显著优势。举例来看,近年来中美贸易战带来的“国产替代”的逻辑已经助力数家国内厂商发展起来,尤其是在技术壁垒较低的细分方向上,国内企业的竞争已经十分拥挤,“国产替代”的红利已经消亡。国内头部公司开始显现,例如MEMS麦克风(以歌尔微电子和敏芯微电子为代表)、MEMS加速度计(以矽睿科技、美泰电子为代表),其他创业公司的发展只能依靠于“替代国产”,但事实往往是各家之间的技术并无明显差别,竞争方式只能是不可持续的价格竞争。
因此关注技术壁垒较高、目前国内尚无明显龙头公司的细分行业,是更有性价比的选择,“国产替代”的红利在这些领域中依然存在,例如量产难度极高的陀螺仪、对可靠性要求极高的各类车规级MEMS传感器、高精度压力传感器等等。
第二,关注传统传感器的MEMS进程,即随着技术进步,该类传感器可以通过MEMS工艺实现,例如MEMS气体传感器取代传统陶瓷气体传感器,MEMS微透镜取代传统光学镜头,PMUT/CMUT(超声换能器)取代传统超声传感器,MEMS光谱调制取代传统分光光谱成像系统等。这些传感器的MEMS化带来的主要好处便是成本的降低和体积的减小,其进一步带来的好处包括能够使其可应用领域扩大而带来市场规模的提升,例如之前单颗传感器的售价为数千元元,只有高端工业需求才能够负担得起;当其价格降低到数十元甚至更低,中低端工业需求和消费级需求将开始尝试应用。其次,从单一传感器走向阵列传感器成为可能,传感单元呈现出指数级上升,同等价格下可以实现更高的性能,例如MEMS光谱成像相对于传统分光光谱成像,在同体积和价格下可以翻倍提升,再例如MEMS气体传感器阵列可以实现“电子鼻”功能,单一传感器可以对多种气体同时进行识别,极大增加了使用的便利程度。这都有望颠覆现有的应用场景,开辟出新的需求。
相较于上一条的“国产替代”,那这一条则是关注于“全球创新”。当前这些领域正处于日新月异的发展过程中,技术路线百花齐放,甚至未来能够广泛应用的技术路线目前仍处在实验室的襁褓之中,当下正是早期布局的时机。诚然投资的风险会更高,但是也更有希望孵化出一家影响人类文明进程的全球性的技术公司。
3. 传感器的智能化
随着下游应用要求越来越高,单依靠于传感器的传统功能已经无法满足各种应用的需求,传感技术开始向智能化发展,即传感器的智能化。目前主要表现出两种技术路径:
一是在传统传感器功能的基础上,增加更多记忆能力和智能算法,或者又可以被称为“感存算一体”,例如语音识别、图像识别、自然语言处理等技术,将信息进一步提升到可认知的层次,如记忆、理解、规划、决策等;
二是多传感器数据融合,既可以是多个同类型传感器的数据融合,也可以是多个不同种类的传感器的数据融合,通过将更多数据融合到一起进行计算处理,更有利于发挥智能算法的计算能力,提升系统的认知力。
1) 单传感智能化
单传感智能化是指在传统的传感器基础上,增加了信号处理、数据转换、通信接口、微处理器等功能模块,使得传感器具有更高的精度、可靠性、自适应性、性价比和功能多样性。
这一理念和几年前火热的“边缘计算”、“感存算一体”概念不谋而合。虽然单传感的智能化可以在中央处理器中实现,但是这会对中央处理器的处理能力带来较大压力,因此传感端开始集成更多定制化的功能实现,以通过增加部分前端成本的代价,提升数据处理效率、降低系统级功耗和成本。
当前比较典型的单传感智能化便是事件相机,传统图像传感器的输出结果是按照预定逻辑的不断数据读出的结果,事件相机则致力于仅输出图像的变化结果,实现保证同等数据信息条件下降低数据传输压力,进一步地,甚至可以输出动作识别等结果,避免使用中央处理器进行视觉处理。
单传感的智能化,不仅需要技术人员对传感器输出数据的逻辑有深刻的认知,同时需要硬件设计能力配合实现,这便是技术壁垒所在。随着市场需求的变化,我们认为各类传感器都将走向智能化,创业公司也将有望利用此机会在部分市场颠覆传统巨头。
2) 多传感融合
多传感器数据融合是20世纪80年代诞生的信息处理技术,主要解决多传感器信息处理问题,多传感器数据融合研究如何充分发挥各个传感器的特点,把分布在不同位置的多个同类或不同类型传感器所提供的局部、不完整的观察信息加以综合,利用其互补性、冗余性,克服单个传感器的不确定性和局限性,提高整个传感器系统的有效性能,以形成对系统环境相对完整一致的感知描述,提高测量信息的精度和可靠性,从而提高智能识别系统识别、判断、决策、规划、反应的快速性和准确性,同时也降低其决策风险。
多传感融合是必然趋势,尤其是近年来关于自动驾驶传感技术的争论日益激烈,但是多传感融合基本已经成为公式。行业目前对此依然处于探索阶段,可实现的技术路径多样,既包括前端原始数据软融合,也包括后端结果软融合,甚至也有前端硬件直接融合的方式。但是各种技术路径目前各有优劣,有分别适合的应用场景,且均不够成熟,依然需要对各技术路径的发展阶段保持持续关注。正是由于技术路线众多,潜在应用市场广泛,且行业巨头之前在该领域积累也有限,未来大概率将出现优秀的创业公司。
九、结语
中国的传感器事业正加速步入发展的黄金时代,这背后离不开两大因素的推动:第一,出于供应链安全的考虑,下游用户对国产传感器的接受度明显提高,甚至某些用户已经对国产化率提出要求;第二,智能感知正处于快速发展的过程中,对传感器的需求量明显提升,同时新型传感器的应用机会也在扩大。
如果说投资于“国产替代”是布局当下,那么投资于“智能感知”则是押注未来。成熟技术的追赶固然重要,但是前沿技术产业化的潜在价值更高,但必然也要承担更高的风险。好在我们已经看到,即使风险更高,越来越多中国的创业者和投资者愿意拥抱新技术,建立新生态,这将有望孵化出属于中国的国际传感器巨头。
审核编辑 黄宇
全部0条评论
快来发表一下你的评论吧 !