全面掌握高多层PCB板材、制造流程与工艺难点

PCB设计

2542人已加入

描述

在当今,万物互联的时代,随着数字化不断深入发展,高多层已成为PCB行业未来发展的关键趋势。从技术层面看,随着5G和AI时代的来临,计算机和服务器领域对PCB的需求由高频高速演变为稳定性能与更为复杂的功能,这无疑对PCB层数及结构提出了更高的要求。从产业发展角度,为了适应通信、智能驾驶、消费电子等未来市场需求,PCB产业正趋于高精度、高密度和高可靠性。以汽车电子领域为例,高多层PCB的高密度布线和可靠性能恰好满足了汽车电子小型化、高可靠性和环境适应性的需求,因此被广泛应用于车载娱乐系统、驾驶辅助系统、发动机控制单元和安全系统等。

高多层板不仅仅是层数增加,其制造难度也成倍增加。今天,阿龙带大家一起来全面掌握高多层PCB板材、制造流程与工艺难点等基本知识。

01.

认识高多层板材

1、一块好的高多层PCB,板材是关键

大家可能在餐饮、银行等场所见过有问题的LED灯板,要么不显示信息,要么频繁闪烁。为什么LED灯板会出现问题?原因之一可能是其所用的PCB的板材质量有问题。板材作为PCB产品的基础,不仅是其核心主要原材料,而且占PCB成本的60%左右。由此可见,板材的重要性不言而喻。所谓,好食材才能做出好食物。好板材才能保证好板子。因此,做PCB,选好板材是关键。

与单层或双层PCB相比,高多层PCB面临着更高的复杂性和性能挑战。这主要体现在三方面:一是高频信号传输特性要求。高多层PCB常用于需要高频信号传输的应用,如通信设备和高速数字信号处理。这要求PCB必须有更好的介电性能和信号传输速度,以减少信号损耗和噪音。

二是热管理需求。高多层PCB通常用于高功率电子设备,需要有效的热管理措施保证元件正常工作温度。这就要求PCB有更好的导热性能和热膨胀系数控制,以优化热传导和分布,避免热点和热应力问题。

三是机械强度和稳定性要求。高多层PCB通常有着较大的尺寸和较高的层数,因此需要更高的机械强度和稳定性。板材的刚性和耐久性对于抵抗振动、冲击和弯曲应力至关重要,以确保高多层PCB的可靠性和寿命。

2、高多层PCB板材的分类

覆铜板(CCL-Copper Clad Laminate),在PCB多层板生产中也称为芯板(CORE),是高多层PCB的关键原材料。它是由铜箔、树脂、玻璃纤维布和其他功能性增强添加物组成的。通过将增强材料浸入树脂,并在一面或两面贴上铜箔,经过热压处理形成板状材料,这就是我们所说的覆铜箔层压板。在分类上,板材可根据材质、成品的软硬度、结构和等级等不同维度进行区分。

具体来说,板材可以分为有机材质和无机材质两大类。

多层板

根据成品的软硬度,板材分为硬板、软板和软硬结合板。硬板是最常见的类型,用于大多数标准电子设备;软板灵活性高,适用于需要弯曲的应用场景;软硬结合板结合了硬板的稳定性和软板的灵活性,适用于复杂的电子产品设计。

在结构上,板材可分为单面板、双面板、多层板和HDI(高密度互连板,特点是盲埋孔技术)。单面板只有一面带有导电路径,双面板的两面都布有电路;多层板通过多层导电图层增加电路密度;HDI板则通过盲埋孔技术实现更高的线路密度和更小的电子设备尺寸。

按照板材等级划分,PCB板材包括94HB(最低阻燃等级)、94V0(更高的阻燃性能)等。其中,94V0级别下,又细分为FR1、22F、CEM-1、CEM-3和FR-4等材料类型。FR1主要用于单面板;22F常用于成本敏感型产品;CEM-1和CEM-3适用于双面板应用;FR-4则因其优良的电气绝缘性能、高机械强度和良好的湿热稳定性,广泛应用于多层板制造。

如果按照基板的增强材料不同,还可分为五大类:纸基、玻璃纤维布基、复合基(CM系列)、积层多层板基和特殊材料基(陶瓷、金属芯基等)。

多层板

3、高多层PCB板材选型

在PCB下单时,您可能会遇到所需板材缺货的情况。这时,选择具有相同性能等级的替代材料就显得尤为重要。高多层PCB的板材选择不仅受到材料本身和内在特性的影响,还包括外部因素。内部因素涵盖一系列重要的考量,如外观要求、尺寸标准、电气性能、热性能和物理(机械)性能等。

其中,外观要求,包括金属箔面的凹痕、皱折、划痕、气泡等缺陷,这些都可能影响最终产品的质量和性能。尺寸要求涉及板材的长度、宽度、对角线偏差、翘曲度等,精确的尺寸对于保证PCB的装配精度和性能至关重要。

接下来,我们重点介绍下电气性能、热性能和物理(机械)性能。

电气性能

电气性能有介电常数(Dk)、介质损耗角正切(DF)、体积电阻、表面电阻、绝缘电阻、耐电弧性、击穿电压、电气强度和相对漏电起痕指数(CTI)。

其中,介电常数(Dk)、介质损耗角正切(DF),和相对漏电起痕指数(CTI)是在选择PCB板材时,用户最为关心的电气性能参数。

介电常数,即Dk,英文全称Dielectric constant。它是描述材料存储电荷能力的物理属性,对电容器性能和电场分布有着显著影响。具有高介电常数的材料能够存储更多的电荷,这对于需要高电容性能的应用尤为重要。此外,介电常数还决定了电场在介质中的传播速度和集中程度。举例来说,FR4板材的介电常数一般在4.2到4.6之间,而铁氟龙介电常数在2.0到3.0范围内,绿油介电常数则位于3.4到3.8之间。

多层板

某厂商的产品技术资料

介质损耗角正切,即DF,英文全称Dissipationfactor,或称为损耗因子,是描述介质材料在交流电场中能量损失的重要物理参数。它反映了材料中电场能量损失与储存能量之比,与材料的分子结构、化学组成和温度等因素紧密相关。在电子器件和电路设计中,DF是关键参数,直接影响信号的带宽、衰减和相位失真,尤其在高频电路和通信系统中至关重要。选择低DF值的材料可以显著减少信号损失并保持良好的信号完整性,例如,像天线板一般选用PTFE这种低损耗的材料。

相对漏电起痕指数(CTI)同样非常重要,它是衡量绝缘材料在电弧作用下的抗电击穿能力。CTI是评估材料耐电弧性能的关键参数,对确定材料的安全性和可靠性在特定环境条件下尤为关键。CTI值的高低通常以标准化分类表示,数值越高,材料的电弧性能越好。

多层板

某厂商的产品技术资料

CTI值的高低直接关联到材料的绝缘性能和耐电弧能力,其中更高的CTI值意味着材料能在更高电压下维持其绝缘性,展现出更佳的耐电弧性能。这一特性对于电气设备和电子产品来说至关重要,因为它保证了在电弧事件发生时,材料能提供充分的保护,从而大幅降低发生火灾和其他意外事故的风险。因此,在设计和选择电子材料时,高CTI值的材料往往被优先考虑,以确保整个系统的安全和可靠性。

多层板

CTI测试等级判定标准

通常,CTI值以标准化的分类进行表述,其中数值越高,表示材料具有更好的电弧性能。目前,嘉立创所有材料CTI均是3级,范围在175-249V之间。

热性能

热性能主要有Tg值、Td值、CTE、热应力、燃烧性等。

Tg值,又叫玻璃化转变温度,是衡量PCB板材热性能的关键指标之一。它标志着材料(如PCB板材)随着温度升高,从硬而脆的玻璃态转变到柔软的橡胶态的临界点。在PCB制造领域,这种玻璃态物质通常指的是构成介质层的树脂或树脂与玻纤布的混合物。

多层板

某厂商的产品技术资料

Tg值对PCB的可靠性和性能有着重大影响。当PCB在其操作温度范围内工作时,保持材料处于玻璃态是非常重要的,可以确保电路板的机械和电气性能稳定。如果PCB在使用过程中超过了其Tg值,那么板材可能会变软,导致尺寸稳定性下降,甚至可能影响到导线和焊点的完整性,从而降低整个电路板的性能和可靠性。

常用普通板材的Tg要求大于135℃,中Tg要求大于150℃,高Tg要求大于170℃。Tg越高,板材的耐热性、尺寸稳定性越好。

Td值,即热分解温度,英文全称Thermal Decomposition Temperature。它是指在高温条件下,材料开始发生化学分解的温度。这是衡量板材在高温环境下热稳定性和耐高温性能的重要指标。在高功率或高温度条件下工作的电子设备中,PCB板材若具有较高的Td值,则意味着它能够在不分解或损失性能的情况下,更好地承受这些条件,确保电路的长期稳定运行。

多层板

某厂商的产品技术资料

Td值越高,意味着板材通常可以承受更高的温度和热应力,保持电路的正常功能并延长设备的使用寿命。

CTE,即热膨胀系数,英文全称Coefficient of Thermal Expansion。它用于描述PCB板材在温度变化下的尺寸变化情况。温度每升高一度,材料就会相应地膨胀或在冷却时收缩。由于PCB板材通常由树脂、铜箔和玻璃纤维增强材料等多种材料组成,这些材料的CTE值各不相同,导致温度变化时它们的膨胀或收缩速度不一致。这种不匹配的热膨胀行为可能会引起板材的尺寸不稳定、应力集中,甚至在焊接等后续加工过程中出现问题。

多层板

某厂商的产品技术资料

CTE值越低,尺寸稳定性越好,反之越差。

物理(机械)性能

在物理机械性能方面,PCB板材的质量和适用性受多种因素影响,包括铜箔剥离强度、抗弯强度、吸水率、可燃性等。

多层板

此外,CAF也尤为重要。CAF现象,又称为灯芯效应,全称Conductive Anodic Filament。它指的是,在高温、高湿、高压等条件下,产品经过长期使用,板材的玻璃纤维作为通道,导致孔壁的铜箔生长形成细长的导电丝状物,这些丝状物最终可能在相邻孔之间形成短路或微短现象。更加棘手的是,当PCB产品经过重新烘烤后,这种故障可能暂时消失,使得问题难以被立即识别和解决。导致CAF发生的原因有多种多样,包括材料、钻孔、电镀、资料设计(孔间距小于IPC2级标准)。

02.

高多层PCB制造流程

首先,我们来看张图。

下图是多层板生产工艺流程所示,多层板的制造与单双面PCB的制造相比则多了一个内层工序流程,关键的步骤就是内层的层叠压合工艺的管控,这对于受控阻抗传输线的电气性能至关重要。内层工序压合完成之后,就来到了与制造单双面板同样的制造工序流程,直到最后的检测工序。

多层板

下面我们一步步来看看高多层PCB制造的关键步骤。

1. 提交制造信息

作为PCB制造的开始,首先,我们需要向PCB板厂提交相关的制造信息。PCB制造所需的信息和常见数据格式包括以下内容:

Gerber文件(RS274X格式)

Gerber RS274X 是目前的主流格式,输出的Gerber文件包括所有电路层、阻焊层、锡膏层、丝印(字符)层、板框、分孔图、制造要求(如多层板叠层结构示意图、层间介质厚度、阻抗管控要求、塞孔要求等)。同时Gerber文件还要能方便PCB板厂的工艺工程师识别各个Gerber文件对应的层信息,所以推荐按一定的命名约定对Gerber文件进行命名,比如嘉立创给出的这个命名规范是个不错的参考:

多层板

钻孔文件

钻孔文件包含所有钻孔坐标和直径数据,常用的文件格式是Excellon格式。

网表数据

IPC定义了兼容格式IPC-356,提供了生成网表和电气性能测试资料必须的所有信息。相较于单层或双面板而言,完整的 PCB 文档对多层 PCB 的制造非常重要,制造信息文档中最重要的信息是:

完整的层结构

有关基材的精确信息

高频高速板材还需提供基材制造商及产品名称

阻抗控制要求

特殊工艺说明(比如塞孔要求)

2.制造信息审核

PCB板厂对制造信息的审核目的是确定大致的制造成本,并为制造做准备。在产品制造或加工前,适当的前期分析可以节省时间和材料。PCB板厂的责任是确定它的工艺能力能否满足给定的产品。

PCB 板厂会根据其制造工艺调整PCB设计的布线信息,比如过孔钻直径补偿或者走线蚀刻补偿等,目的是提高PCB可制造性,有些关键的修改板厂也会与PCB Layout进行沟通确认,当然,较为理想的情况是,在PCB设计进行过程就考虑了DFM可制造性并进行设计优化,这样会节省许多后期与PCB板厂沟通确认的时间。

如果是在嘉立创打板,他们家还提供了一项“确认生产稿”的个性化服务可供选择,只要咱们仔细检查确认,便能发现自己设计上存在的问题,当然也能发现嘉立创工程师处理过程中的一些错误。如果是嘉立创的问题,别忘了找工程人员退回确认生产稿的费用。

多层板

3. 材料选择

在第一部分,我们详细的介绍了高多层PCB板材,这里就不多展开了。

4.多层板的制造流程

多层板的生产工艺流程如果细化展开,通常需要约200个不同的加工步骤。因此,对PCB设计人员来说,熟悉基材的不同类型及性能、多层板的制造工艺以及焊接工艺非常重要。通过组合不同规格的半固化片和覆铜层压板(芯板),可以实现所有所需的厚度。对于多层板的叠层结构,需要注意各个层次结构必须对称,并且具有相同的层厚。内层的铜应均匀分布在这些对称层上。如果分布不均匀,加热时热应力不均衡会造成电路板产生翘曲。

而对多层板结构质量影响很大的因素之一是各个层之间的精确调整。这些层必须精确地重叠在一起,否则在通过钻孔连接后,各层之间的电路可能出现开短路问题。通过机械对位孔进行精确调整,然后在层叠时使用定位销来调整层叠。为了确保内部层与半固化片之间有良好的粘合,必须对铜表面进行化学粗化处理,这种粗化处理称为棕化。在压合多层印制电路板之前,对内部电路层进行检查对于确保质量至关重要,在这个阶段,如果检查发现了连接或其他缺陷,仍然可以进行修复,检查通常使用AOI(自动光学检查)自动进行,AOI系统将蚀刻后的电路图形与CAD数据进行直接的视觉比对。

多层板

上图是6层刚性多层板的压合制造示意图,A1、A2、A3是半固化片,L2-L3、L4-L5是完成内层图形的双面覆铜层压板,B1、B2是用于外层线路的铜箔。

常规的刚性多层板的压合原理是将一定数量的双面覆铜板进行组合(内层图形已经完成并进行棕化以加强结合力),双面覆铜板之间通过半固化片隔开,半固化片作为绝缘材料避免各个铜层的短路,同时半固化片在经过加热之后,其中的树脂会再次呈现融化状态实现各个覆铜层压板的粘结。最后,压合后的各个层通过金属化的孔连接起来。目前嘉立创的多层板制造工艺可以制造高达32层的多层板,足以覆盖大多数的应用场景。

压合的精确控制对于受控阻抗传输线的特性阻抗影响至关重要,在压制过程中,随着温度的升高,半固化片中的环氧树脂会重新融化,它通过流动填充导线之间的空隙,并将内层粘合在一起,树脂的流胶特性会影响最终的信号层与参考层的距离,信号层与其参考层的距离变化对于阻抗的变化有着最大的影响。

多层板

如上图所示,PCB的设计稿最终是拼板到一个大的工作面板上进行生产的,对于特性阻抗管控而言,整个大的面板在压合时,树脂流动的均匀性对于阻抗变化的影响也不容忽视,这时所采用的压合设备的性能也至关重要。

03.

高多层PCB关键工艺

在高多层板生产制造中,一块好的PCB,板材是关键。但,工艺直接关系到高多层PCB品质高低。说到这方面嘉立创作为一家在PCB行业深耕近20年的专业厂商,嘉立创在高多层板的生产中,采用了沉金工艺、盘中孔工艺和正片工艺,全方位确保产品的高品质

嘉立创6-32层电路板全部采用沉金工艺,且沉金厚度免费升级为2u"。沉金是业内一种相对昂贵的表面处理方法,它可以提供良好的电气连接、防腐和焊接性能。沉金层可以提供平滑、均匀的金属表面,有助于保持良好的信号传输和阻抗控制。并且,它可以确保焊接过程中金属层的稳定性和耐久性,提供优异的耐腐蚀性能,延长PCB的使用寿命。

多层板

PCB(采用沉金工艺、盘中孔工艺生产)

除沉金工艺外,嘉立创对6-32层板一律免费采用盘中孔工艺(树脂塞孔+电镀盖帽)。对PCB的品质来说,过孔非常重要,因为它在电子设备中扮演着重要角色,支持了复杂电路的实现和功能的可靠性。因种种因素影响,过孔会慢慢被腐蚀,从而导致连接失效、信号衰减、短路和漏电以及可靠性问题,而盘中孔工艺则有效解决了这些问题。

多层板

盘中孔工艺三维图

盘中孔即焊盘中打孔,生产时在孔内塞上树脂,烤干树脂磨平,然后进行电镀面铜。其好处在于不仅能大大提高PCB设计工程师的效率,让设计时间从7天缩短到2天左右,而且能大大提高PCB的良率,以及提升高速板的性能。

审核编辑:黄飞

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分