飞轮储能系统的构成及原理

描述

电的储能方式。该系统采用物理方法进行储能,并通过电动/发电互逆式双向电机实现电能与高速运转飞轮的机械动能之间的相互转换和储存。飞轮储能系统具有功率密度高、储能密度高、适应性强、应用范围广、效率高、长寿命、无污染和维修花费低等优点。

典型的飞轮储能系统由飞轮本体、轴承、电动/发电机、电力转换器和真空室5个主要组件构成。在实际应用中,飞轮储能系统的结构有很多种。图1是一种飞轮与电机合为一个整体的飞轮储能系统。

飞轮本体是飞轮储能系统中的核心部件,作用是力求提高转子的极限角速度,减轻转子重量,最大限度地增加飞轮储能系统的储能量,目前多采用碳素纤维材料制作。轴承系统的性能直接影响飞轮储能系统的可靠性、效率和寿命。

目前应用的飞轮储能系统多采用磁悬浮系统,减少电机转子旋转时的摩擦,降低机械损耗,提高储能效率。飞轮储能系统的机械能与电能之间的转换是以电动/发电机及其控制为核心实现的,电动/发电机集成一个部件,在储能时,作为电动机运行,由外界电能驱动电动机,带动飞轮转子加速旋转至设定的某一转速;在释能时,电机又作为发电机运行,向外输出电能,此时飞轮转速不断下降。显然,低损耗、高效率的电动/发电机是能量高效传递的关键。

电力转换装置是为了提高飞轮储能系统的灵活性和可控性,并将输出电能变换(调频、整流或恒压等)为满足负荷供电要求的电能。真空室的主要作用是提供真空环境,降低电机运行时的风阻损耗。

飞轮储能系统的核心部件是飞轮,它的设计力求提高转子的极限角速度,减轻转子重量,以最大限度地增加飞轮储能系统的储能量。同时,采用先进的材料如碳素纤维制作飞轮,以提高其性能和安全性。

飞轮储能器中没有任何化学活性物质,也没有任何化学反应发生。旋转时的飞轮是纯粹的机械运动,飞轮在转动时的动能为:E=1/2Jω2式中:J为飞轮的转动惯量;ω为飞轮旋转的角速度。

飞轮转动时动能与飞轮的转动惯量成正比。而飞轮的转动惯量又正比于飞轮的直径和飞轮的质量,过于庞大、沉重的飞轮在高速旋转时,会受到极大的离心力作用,往往超过飞轮材料的极限强度,很不安全。因此,用增大飞轮转动惯量的方法来增加飞轮的动能是有限的。

飞轮储能装置中有一个内置电机,它既是电动机也是发电机。在充电时,它作为电动机给飞轮加速;当放电时,它又作为发电机给外设供电,此时飞轮的转速不断下降;而当飞轮空闲运转时,整个装置则以最小损耗运行。

电力转换器

飞轮储能是通过电动/发电互逆式双向电机,电能与高速运转飞轮的机械动能之间的相互转换与储存,并通过调频、整流、恒压与不同类型的负载接口。典型的飞轮储能系统由飞轮本体、轴承、电动/发电机、电力转换器和真空室5个主要组件构成。在实际应用中,飞轮储能系统的结构有很多种。

图1是一种飞轮与电机合为一个整体的飞轮储能系统。充电时,电动/发电机通过转换器接外电源作电动机运行,把飞轮转子快速加速到非常高的转速,于是电能转化为动能储存起来。放电时,电动/发电机作发电机运行,通过电子转换器向负载输出电能,转子转速下降,动能转化为电能。

飞轮储能技术在航空航天、UPS电源、交通运输、风力发电、核工业等领域都有广泛的应用前景。与化学储能相比,飞轮储能的主要优势在于支持高频次充放电、使用寿命长、安全性高,但劣势在于储电量低、度电成本高和功耗高。

目前,我国自主研发的飞轮储能技术已取得重大突破,例如兆瓦级飞轮储能装置在轨道交通行业的应用,以及飞轮与锂电池储能复合调频项目的投运。然而,飞轮储能技术尚不具备规模化生产能力,仍需要进一步的技术研发和市场推广。

审核编辑:黄飞

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分