机器人3D视觉引导系统框架介绍

工业控制

1210人已加入

描述

基于结构光测量技术和3D物体识别技术开发的机器人3D视觉引导系统,可对较大测量深度范围内散乱堆放的零件进行全自由的定位和拾取。相比传统的2D视觉定位方式只能对固定深度零件进行识别且只能获取零件的部分自由度的位置信息,具有更高的应用柔性和更大的检测范围。可为机床上下料、零件分拣、码垛堆叠等工业问题提供有效的自动化解决方案。

机器视觉3D引导系统框架

机器视觉

3D重建和识别技术

通过自主开发的3D扫描仪可获准确并且快速地获取场景的点云图像,通过3D识别算法,可实现在对点云图中的多种目标物体进行识别和位姿估计。

机器视觉

3D重建和识别效率

机器视觉

多种材质识别效果测试

得益于健壮的重建算法和识别算法,可对不同材质的零件进行稳定的重建和识别,即便是反光比较严重的铝材料及黑色零件都能获得较好的重建和识别效果,可适用于广泛的工业场景。

机器视觉

机器人路径规划

并不是获得零件的位姿信息后就能马上进行零件的拾取,这仅仅只是第一步,要成功拾取零件还需要完成以下几件事:

机器视觉

自主开发的机器人轨迹规划算法,可轻松完成上述工作,保证机器人拾取零件过程稳定可靠。

快速切换拾取对象

只需要四个简单的操作即可实现拾取对象的快速切换,无需进行复杂的工装、产线的调整。

机器视觉

审核编辑:黄飞

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分