简要分析LED灯具的散热设计

显示光电

95人已加入

描述

  LED又称发光二极管(Light Emitting Diode),属于半导体组件。

  自1962年美国通用电气公司开发出全球第一种可实际应用的红光LED开始,至今LED已全面迈入全彩时代。LED的发光原理简单来说是由含电洞的P型半导体与含电子的N型半导体结合成之P-N二极管,在P-N二极管两端加上顺向偏压,当电流通过时,电子与电洞流至接合面接合时会因放出能量而发光 (可参考下图)。

  散热设计

  图1  LED发光原理

  LED本身是单色光源,如今随着光效提升及蓝光LED的出现,它的应用也逐渐偏向多元化,从早先的低功率电源指示灯演进成LED背光模块和LED照明等高功率应用。LED被誉为21世纪的照明新光源,它具有效率高、寿命长、省能源、不易破损、环保无汞等传统光源无法与之比较的优点,在节能减碳及环保意识方兴未艾之际,加上各国政府陆续宣示的能源政策(例如:美国2007年颁布的“能源独立和安全法案”提出白炽灯禁用时程、日本2010年修订的“能源基本计划”提出减碳目标),使得占生活用电大量比重的“照明”成为鼓励汰换的项目之一。能源趋势、政府法令与LED发光特性三者相乘作用之下,促使LED照明产业的蓬勃发展,也吸引了国内/外厂商对于LED上、中、下游产业的投入。

  LED如同所有电子零件一般,在使用或运作的过程中都会产生热能及温升现象,如果忽视散热问题,将导致LED因高温而提早烧毁的结果。LED灯具的设计较传统灯具复杂,包含光学、机构、电子及散热,其中“散热”尤其重要,因为目前高功率LED灯具的转换率仅有20%会转换成光,其余80%会转换为热,如果不能将热量导出灯具之外,将无法达到LED光源宣称的50,000小时寿命,同时热量会影响LED的发光效率,导致严重光衰及灯具毁损的惨况。


  LED灯具的散热设计

  LED的发光效率及寿命与工作温度息息相关,呈现反比关系,下图为美国 CREE 所发布的LED寿命报告,温度每下降10 ℃寿命将延长2倍且光通量提升3%-8%。

  散热设计

  图2  LED寿命报告

  由于高功率LED技术的发展,使得LED灯具面临到热管理和散热设计的严苛挑战,因为温度升高不但会造成亮度下降,当温度超过摄氏100度时更会加速灯具本体及封装材料的劣化。因此,除了LED封装组件本身的散热技术外,LED灯具的散热及导热设计更是维持灯具寿命的最大关键。

  LED应用于户外照明,其散热设计相较于其他LED终端产品(例如:LED背光面板、LED车用照明等)更为复杂多元,因为LED灯具的操作环境会因为温度变化、沙尘量、湿度等因素更加严苛。以LED路灯为例,要能够长时间于户外环境工作,不仅必须符合安全法规的要求 (例如:UL、CE),更需达到克服光学特性稳定性(如、光衰变化)、沙尘侵袭、鸟粪堆积、空气中胶质悬浮物质及水气虹吸现象造成之防水防尘问题等可靠度及恶劣环境的考验。

  在灯具设计方面,由LED芯片、LED芯片基板、芯片封装、线路设计、系统电路板、散热鳍片到灯具外壳再再都考验着LED产业上、中、下游的研发能力。传统用于指示灯的LED多为炮弹型结构,其四周以绝缘性环氧树脂(epoxy)进行封装,故LED晶粒所产生的热能主要由下方的两根金属导线以传导方式往系统电路板方向散出。然而当LED跨入照明领域后,1W以上的高功率LED成为主流,也为了增加热传导面积,照明用途之LED改采平板式封装,使LED芯片基板和系统电路板能有较大的贴和面积。

  散热设计

  图3  炮弹型和平板式LED芯片

  目前常见的LED芯片基板为陶瓷基板,其散热性佳,低膨胀系数等特性,减低因热应力而产生的变型,其次还具有耐热、耐潮、绝缘等优点,故陶瓷基板成为高功率照明用LED芯片基板的常用散热材料。陶瓷基板目前分为3大类:(1)氧化铝(Al2O3)、(2)低温共烧陶瓷(LTCC)、(3)氮化铝(AlN),其中以AlN之导热性最佳,但技术门坎最高,故AlN多用于3W以上之LED产品,而Al2O3则用于1W-3W的范围, LTCC则适用于大尺寸大功率、小尺寸小功率之LED产品。以Cree XLamp LED系列为例,即采陶瓷基座优化散热能力。

  散热设计

  表1  散热基板的分类和膨胀性、导热性介绍。

  在封装方面,可采打线、共晶或覆晶三种方式将芯片和LED散热基板连结,打线是藉由金属导线连接LED芯片和芯片基板,芯片产生的热只能藉由导线进行传导,散热的效能受限于导线的材质和细长的几何型状,故散热效能备受限制,相较之下共晶、覆晶之接合方式,大幅减少导线长度并加大导线截面积,提升散热传导能力。

  散热设计

  图4  打线式封装(左图)和覆晶式封装(右图)

  在线路改良方面,有厂商推出高压LED产品,其原理是将许多小功率LED进行串连,得到高电压、小电流的产品。高压LED多用于球泡灯、灯管、投射灯等空间受限的照明产品,可减低控制线路布置上的困难性。相较于一般LED,高压LED的驱动电流较小,产生的热量也相对较少,可避免掉入”温度上升→阻抗下降→电流增加→热能增加→温度上升”的恶性循环中,可设计出系统稳定性较佳的LED灯具。

  介绍完LED芯片基板后,接着提到同样于传递热量具有重责大任的系统电路板,LED芯片藉由焊接和系统电路板进行链接,由芯片所产生的热能也由芯片基板传导到系统电路板,目前常用的为具有高导热系数的金属芯基板(Metal Core PCB;MCPCB),虽然前述有提过陶瓷基板的导热性能佳,但因系统电路板之面积较大,在考虑成本因素和灯具重量等因素,多会舍弃陶瓷基板,改用MCPCB做为系统电路板。MCPCB由3层结构所构成,由上而下分别为导电线路层、高导热绝缘层和金属基板,其中高导热绝缘层的材质须慎选,若使用高膨胀系数的材质,绝缘层易在高温下膨胀而产生裂缝、空洞,反而使空气进入MCPCB中,形成额外的热阻抗,降低导热的效率,部分厂商会于导热绝缘层和金属基版间喷涂陶瓷散热漆,可提高绝缘层的绝缘阻抗、节省多层导热胶的材料成本和加强MCPCB的散热能力;最底层的金属基板多采用铝合金,利用铝合金较佳的散热特性,达到热传导的目的。


  系统电路板的后端结合着散热系统进行散热,散热系统可分为主动式散热和被动式散热,主动式散热包含风扇强制散热和磁力喷流散热,被动式散热包含自然对流散热、回路热管散热,其下将一一介绍:

  1. 风扇强制散热:

  风扇强制散热顾名思义就是藉由风扇产生空气对流,将热空气导出灯具本体外来进行散热,使用风扇强制散热可以非常有效的将热排出,在计算机、冷气及汽车中都以风扇进行强制散热,目前鑫源盛科技的S01 Glory Series LED路灯系列即采用风扇强制散热技术。

  2. 电磁喷流散热:

  电磁喷流散热不使用风扇扇叶产生气流,其结构为一具有薄膜之中空腔体,其利用电磁或压电驱动器以每秒100~200次的频率振荡薄膜,促使薄膜进行上下振荡,随着薄膜的上下位移,空气会流入中空腔体再行喷出,喷出后的气流会带动周边空气产生涡流现象,强化空气对流能力,目前已应用于GE 27W Energy Smart LED球泡灯。

  3. 自然对流散热:

  自然对流散热是透过散热器(例如:散热鳍片、灯具灯壳、系统电路板等) 和空气进行直接接触,散热器周边的空气因吸收热量成为热空气,接着热空气上升,冷空气下降,自然就会带动空气产生对流,达到散热的效果。随着高功率灯具产品的推出,使用自然对流散热需有较大的散热表面积,故散热鳍片因应而生,多数加装于灯具背面,提供较大的散热面积,强化对流散热的效果,阳全光电之LED天井灯即采用鳍片自然散热技术。

  散热鳍片的使用虽增加散热效果,但也增加了灯具的整体重量和成本,更增添了立杆型灯具安全悬挂的风险,此外,LED灯具常面临落尘堆积等问题,一旦经过长时间的使用,过多的脏污、灰尘累积于散热鳍片,将弱化散热能力,相较之下部分业者选择将散热鳍片设计与灯具发光面同向(向下散热),彻底避免了落尘堆积的问题,市面上由鑫源盛科技所生产的多款LED路灯(例如:S02 Orra Series、S06 Fudo Series)即采用向下自然散热设计方式。

  4. 回路热管散热:

  此种散热方法是透过循环式的热管进行散热,回路管的两端为系统电路板(热源处)和散热器,回路管的内部则充填着工作流体,并配有蒸发器,其工作原理为:当系统电路板传来热能时,热源处的工作流体吸收热量后,经蒸发器转变为气体,利用气体移动快速的特性,热源处的热量可快速传导到灯壳或散热器,因此回路热管散热仅解决热传导问题,无法有效达到“散热”功能。

  散热设计

  表2  灯具散热系统介绍

  在灯具设计上,散热鳍片和外灯壳因暴露于空气中,为避免氧化多经过阳极处理,近年有厂商推出软陶瓷散热漆用于取代阳极处理程序,并宣称其热阻值接近金属,能达到加速导热的效能,然其成效未知,尚待业界同仁的使用与经验分享。

  截至目前为止,上述探讨的都是热传导和热对流两种方式,目前有厂商宣称其陶瓷散热基板可利用远红外线型式将热辐射散出,进行远距离传热,并宣称可用于取代LED芯片基板后端的导热金属(散热鳍片、金属灯壳),达到成功散热和减轻灯具重量的成效,此技术之散热效能若真如厂商所言,也将为LED灯具的散热设计带来重大的进展。

  结论

  部分市售LED灯具的散热设计容易忽略掉一些细节,例如忽视热传导的均温性,即散热鳍片的温度分布严重不均匀,导致其中一部分的鳍片对散热作用有限,甚至没有发挥散热效果。有些设计错误则会带来危险性,尤其是LED路灯通常装设于8-12米的杆高,如果散热器重心设计不佳,可能导致重量与风阻过大,危险性增加,当遇到台风或地震将有可能导致严重意外。

  鑫源盛科技管新宁副董事长曾经说过:“做为一个高科技节能照明产业的从业人员必须认清,良好的LED灯具散热(包含热传导、均温性、热交换等)必需以复杂的热传学基础硬理论为依归,必须正视LED路灯的性能,必须要有科学的数据及理论做支撑、完善的系统设计方法为方针、良好的制程为基础,最后再以第三公正单位的检测报告为依据,这样才不会一再发生光衰退货阻碍产业发展的恶性循环”。

  LED照明市场成长非常迅速,预计在2015年将达到200亿美元的市场规模,此外,由于日本电价高且受到311福岛地震的影响,更加加速LED灯具的需求骤增。***的LED产业链完善,整体产能亦高居亚洲第二。因此,如何在争取市场的同时审慎评估自身产品的质量、研发和制程能力,做好LED灯具的散热设计经得起时间和环境考验,这些都是业者必须严格自我规范的重点。

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分