电子说
1821年德国物理学家塞贝克发现,将两种不同的金属A和B联接成回路,当两个接点分别置于不同的温度环境中时,回路中便出现电流。这种物理现象称为热电效应或塞贝克效应,这种装置称为热电偶。
热电偶测温原理:
热电偶是基于热电效应的原理进行测温即两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个焊接点之间存在温差时,就会在回路中产生电流,称为热电流,两者之间产生
相应的电势称为热电势。
两个接点的温差越大,产生的热电势就越大。热电偶温度高的接点称为测量端,工作端,与被测介质接触。温度低的接点称为冷端,也称为补偿端,通常以0℃为标准进行测量。如果能保持冷端温度不变,回路中产生的热电势就随测量端温度升高而增大。但由于冷端通常不为0°C,造成了热电势差减小,出现误差。因此为减少误差所做的补偿措施就是冷端温度补偿,即添加补偿导线。
【补偿导线】释义:
定义:在一定温度范围内,热电性能与热电偶热电性能很相近的导线称为热电偶的补偿导线。
要求:补偿导线与热电偶材料相匹配,正负极不能接反。
作用: 补偿导线作用的实质是热电偶的延长。
常见热电偶类型:
常见热电偶的分度号有主要有K、T、E、J、N、S、R、B等几种,其中K、T、E、J、N属于廉金属热电偶,S、R、B属于贵金属热电偶。
热电偶测温范围:
热电偶通常用于测量较高的温度和较大的温度范围。测量范围可达-200℃~1800 ℃ 。
热电偶测温优点:
在温度测量中,热电偶的应用极为广泛,它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种无源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度。
热电阻测温原理:
RTD的英文“Resistance Temperature Detector” 翻译为“电阻温度检测器”, RTD能够测量温度,是利用了金属电阻,随温度的升高而升高这一性质,根据导体或半导体的热阻效应,即阻值虽温度的变化而变化,通过测量其阻值而计算温度。
常见热电阻类型:
不是所有的金属都适合做测量电阻,进过筛选,人们将铂、铜、镍作为RTD的使用材料。
铂的特性稳定、耐腐蚀,不会因高低温引起物理或化学变化,所以铂RTD是测量温度最准确最稳定的一种,并且在工业生产中使用最广泛,常见的型号有Pt100、Pt500、Pt1000等;
镍是一种硬且有延展性的金属,比较耐腐蚀,但长时间的使用,会使镍金属加速老化,影响测量精度,所以镍RTD的使用范围很小;
铜是比较柔软,有良好延展性和导电性的金属,在一定温度下,铜的电阻温度线性度很好,但是铜在高温下,会发生氧化反应,影响精度,所以铜RTD在低温场景下的使用比较多,常见的型号有Cu50、Cu100,
这些RTD的型号是什么意思呢?
以Pt100为例,Pt表示是铂电阻,100表示它在0℃时,电阻的阻值是100Ω,其他型号的表示方法也是这样。
温度-T 阻值一R 关系公式:T=(R-100)/0.385
例如:测得某热电阻阻值为137.5,则温度T=(137.5-100)/0.385=97.4
热电阻测温范围:
RTD的电阻温度线性度好,常用于中低温的温度测量,测量范围-200℃~600℃
热电阻测温优点:
测量精度高,复现性好;有较大的测量范围,尤其是在低温方面;易于使用在自动测量中,也便于远距离测量。
根据引线区分:
热电偶:两根引线(正极、负极)四根引线(一般为双芯热电偶)
热电阻:三根引线(两根线颜色一样,使用较多)、两根引线(使用较少)、两根或者四根引线的没有特殊标记,不好区分。
根据型号区分:
热电偶型-WR 热电阻-WZ
根据工作原理区分:
热电偶:两种不同材料的导体,半导体焊接,所以回路电阻值较小,一般只有1Ω左右的阻值。
热电阻:电阻值和温度有联系,测温部位为热阻芯,所以回路值较大。Pt100,0℃电阻测量100Ω。Pt1000,0℃电阻测量1000Ω。
根据使用场所区分: 测量的温度范围不一样,热电偶适合高温场合,热电阻适合一般场合。
热电偶、热电阻与采集卡的接线:
热电偶的接线方式:
要求:补偿导线材料要对应,正负极对应接,不能接反
使用热电偶温度变送器
补偿导线的作用:
由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度差不能超过100℃。
对应温度变送器:
K型热电偶,输出mV电压,需要用对应的温度变送器。
PT100热电阻变送器接线:
Pt100铂电阻和温度变送器要实现对接必然需要引出线,特别是工业用Pt100铂电阻安装在生产现场,与温度变送器之间存在一定的距离,因此Pt100铂电阻的引线电阻对测量结果必然会产生较大的影响,且不同的接线方式对测量结果势必产生不尽相同的影响。
由于连接引线的电阻RL1、RL2无法测得而被计入到电阻阻值中,使测量结果产生附加误差;假设t=100C,这时若引线的电阻值为3Ω,则引起的测量误差将达到7.79℃,可见两线制接线由引线电阻引起的测量误差是不可忽视的。
因此,三线制接法可以补偿因引线电阻引起的测量误差,且三线制接线常与电桥配套使,将Pt100铂电阻作为电桥的一个桥臂电阻,将引线一根接到电桥的电源端,其余两根分别接到Pt100铂电阻所在的桥臂及与其相邻的桥臂上,当桥路平衡时,引线电阻的变化对测量结果没有任何影响,这样就消除了引线电阻带来的测量误差,但是必须为全等臂电桥,否则不可能完全消除引线电阻的影响。采用现代工艺制作的三线制Pt100铂电阻补偿电缆三根引线的电阻值已能做到几乎完全相同,故采用三线制接线能大大减小引线电阻带来的附加误差.
在电压表输入阻抗足够高的条件下,电流几乎不流过电压表,这样就可以精确测量未知电阻上的压降,通过计算得出电阻值,故四线制测量方式可以完全不受连接引线电阻的影响,是Pt100铂电阻测温最理想的接线方式,主要用于精度高的温度检测。
随着现代科学技术的发展,Pt100铂电阻在工业生产中得到了广泛的应用。从测温系统设计者角度来看,这就要求需要依据用户需求,科学合理的为用户选取一种既能保证测温结果准确性,又能为用户节省成本的最符合应用现场要求的接线方式,但总体应遵循以下基本原则:
(1)两线制由于受引线电阻影响极大,尽量避免采用或少采用(在对温度测量精度要求低,且引线极短或没有引线的单一测点中可采用);
(2)三线制是现代工业生产中较为广泛应用的一种接线方式,由于补偿引线的引入,大大降低了引线电阻的影响,对于一般工业生产中用于对温度监视的系统可采用此种接线方式;特别是测点数量庞大的计算机监视系统(其工作原理十分简单,只需要将温度信号通过信号线传输到温度采集模块,采集模块会自动识别温度信号,再由通讯模块将采集到的信号传输给计算机系统),采用三相制接线将极大的提高计算机监控系统的测量精度及可靠性;
(3)在输入阻抗足够高的条件下,四线制测量方式可以完全不受连接引线电阻的影响;但对于测点数量庞大,相对而言对精度要求又不是特别高的工业温度监视系统而言,一只传感器增加一根引线,由于基数庞大,且引线相对较长,势必增加系统建设成本,因此四线制并不可取:对于温度测量精度要求较高的测量控制系统、或者实验室计量基准采用四线制接线就极为必要;
(4)Pt100铂电阻的使用虽然简单,但切不可想当然的在终端把两线并三线(或并四线)接入测量仪表,一定要从Pt100铂电阻的传感器引出三线(或四线),并且三线(或四线)都接入终端仪表,否则必然存在温度虛高。
所以,现在工业最常用的为三线制的Pt100铂热电阻。
审核编辑 黄宇
全部0条评论
快来发表一下你的评论吧 !