学习笔记|如何移植NCNN

描述

嵌入式

在计算机视觉和深度学习领域,NCNN(Netural Network Computer Vision)是一个轻量级的神经网络计算框架,被广泛应用于各类嵌入式设备和移动平台。今天,让我们一同跟随共创社团队的步伐,揭秘他们如何进行NCNN的交叉编译,并在ELF 1开发板上演绎实践,以此验证模型推理性能。

 

1、从GitHub下载NCNN源码:https://github.com/Tencent/ncnn

嵌入式

 

2、将ncnn-master.zip拷贝到开发环境的/home/elf/work目录下并解压:

elf@ubuntu:~/work$ unzip ncnn-master.zip

 

3、配置CMake:

elf@ubuntu:~/work$ cd ncnn-master/toolchains/ elf@ubuntu:~/work/ncnn-master/toolchains$ vi arm-poky-linux-gnueabi.cmake

 

将下面的内容添加到arm-poky-linux-gnueabi.cmake文件中:

set(CMAKE_SYSTEM_NAME Linux) set(CMAKE_SYSTEM_PROCESSOR arm) set(CMAKE_C_COMPILER "arm-poky-linux-gnueabi-gcc") set(CMAKE_CXX_COMPILER "arm-poky-linux-gnueabi-g++") set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER) set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY) set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY) set(CMAKE_C_FLAGS "-march=armv7-a -mfloat-abi=hard --sysroot=/opt/fsl-imx-x11/4.1.15-2.0.0/sysroots/cortexa7hf-neon-poky-linux-gnueabi") set(CMAKE_CXX_FLAGS "-march=armv7-a -mfloat-abi=hard --sysroot=/opt/fsl-imx-x11/4.1.15-2.0.0/sysroots/cortexa7hf-neon-poky-linux-gnueabi") # cache flags set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS}" CACHE STRING "c flags") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}" CACHE STRING "c++ flags")

 

4、编译:

elf@ubuntu:~/work/ncnn-master$ mkdir build elf@ubuntu:~/work/ncnn-master$ cd build/ elf@ubuntu:~/work/ncnn-master/build$ . /opt/fsl-imx-x11/4.1.15-2.0.0/environment-setup-cortexa7hf-neon-poky-linux-gnueabi elf@ubuntu:~/work/ncnn-master/build$ cmake -DCMAKE_TOOLCHAIN_FILE=../toolchains/arm-poky-linux-gnueabi.cmake -DNCNN_SIMPLEOCV=ON -DNCNN_BUILD_EXAMPLES=ON -DCMAKE_BUILD_TYPE=Release .. elf@ubuntu:~/work/ncnn-master/build$ make

 

5、将编译完成得到的benchmark文件夹(build目录下)和项目文件夹下的benchmark文件夹打包并放到U盘里:

elf@ubuntu:~/work/ncnn-master/build$ tar cvjf benchmark.tar.bz2 benchmark/ ../benchmark/

 

6、将U盘插入到ELF 1开发板上,拷贝压缩包到/home/root路径下并解压:

root@ELF1:~# cp /run/media/sda1/benchmark.tar.bz2 . root@ELF1:~# tar xvf benchmark.tar.bz2

 

7、测试:

root@ELF1:~# cd benchmark/ root@ELF1:~/benchmark# ./benchncnn

 

嵌入式

 

观察结果显示,绝大部分模型均已成功运行,其中所展示的数字指标代表了各自的执行耗时。需注意,数值越小,意味着推理过程的完成速度越快。

 

通过这次实践,共创社不仅展示了NCNN在嵌入式设备上的灵活性与强大性能,还向我们揭示了深度学习嵌入式技术落地的无限可能,更激励着每一位嵌入式探索者:无论面对何种挑战,只要勇于探索、精于实践,便能在嵌入式技术的海洋中乘风破浪,开辟出一片属于自己的天地。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分