加强触控模组与面板同步 克服杂讯干扰问题

触控感测

205人已加入

描述

  核心提示:智能手机薄型化设计,使得触控面板控制器容易受到显示器产生的杂讯干扰。为解决此一问题,触控芯片开发商已着手改良触控传感器设计,并加强触控模组与LCD面板运作频率的同步化。目前新的设计方桉,已获得In-cell内嵌式电容式触摸屏开发商导入。

  显示器产生的杂讯会干扰电容式触摸屏的感测功能,要进一步改善就须了解液晶显示(LCD)技术的基本原理及杂讯产生的原因,方能找出因应之道。

  首先须整理出现今市面上有哪些种类的显示器,如主动矩阵有机发光二极体(AMOLED)、薄膜电晶体(TFT)LCD等智能手机常用方桉。一般来说,AMOLED的画质较佳,对触控芯片产生的杂讯干扰也少于LCD,但AMOLED面板较昂贵,制造难度也高于LCD;因此,LCD至今仍主宰整个市场。由于LCD显示器是最受欢迎的技术,但产生的杂讯也最多,因此本文将把焦点放在LCD。

  触控薄型化加剧LCD杂讯

  为了解LCD何以产生杂讯,须掌握LCD基本运作原理。如图1所示,从LCD显示器的最底层开始,光线在此产生后再朝上反射,每个画素含有红、绿、蓝三个子画素,每个子画素又包含一个液晶叠层(Sandwich),叠层顶部则贴合氧化铟锡(ITO)透明导电薄膜,其顶层与底层中间夹着液晶材料。

  传感器

  图1 LCD与触控面板架构图

  其中,顶层为所有子画素的共极,通常称为VCOM层;底层则专为子画素配置,称作子画素电极,当电压导通到LC叠层,液晶材料就会扭转白光的极性 (Polarity),在叠层上方的偏光板,只让特定极性的光线通过。若光线的极性与偏光板的极性一致,子画素就会达到最高亮度。若光线极性与偏光板相反,子画素的亮度就降到最低。

  此外,每个子画素都有一层彩色滤光片(R、G、或B),其作用类似彩绘玻璃窗,藉由把电压导至三个子画素的液晶叠层,画素就能设定成任何RGB组成色。每个子画素还含有一个TFT,做为导至液晶叠层电压的on/off开关,这样的设计在刷新全屏幕影像时能有效对屏幕上的画素进行排序。

  如图2显示,画素在TFT闸极(Gate)被开启,TFT的源极(Source)连结到彩色数字类比转换器(DAC)输出端,TFT汲极(Drain)则连结到ITO子画素电极。由于液晶材料无法承受直流(DC)电压,因此偏压必须是交流电。ACVCOM与DCVCOM两种类型的LCD显示器也有所差异,前者主要透过一个差分电压主动驱动VCOM与子画素电极,因VCOM层係由AC推动,故称为ACVCOM方桉。后者则透过DC驱动共极层,而子画素由AC 驱动,此信号以DC值为中心进行偏摆,两种VCOM方桉各有不同的效能与成本优劣势。

  传感器

  图2 LCD与触控面板电路图

  业界都知道ACVCOM因主动驱动大面积的ITO(VCOM)层,将造成大量杂讯;DCVCOM则以低杂讯的表现为业界所熟知,然而事实不一定如此。以往传感器与LCD表面之间有一层薄的空隙(Air Gap)。但现今手机做得更薄,因此大多不再有这层空隙,将ITO传感器直接贴合到LCD表面的方式逐渐为大多数厂商采用,造成杂讯耦合更加严重。

  更有甚之,业界当前设计方向是要求触控面板控制器能直接感测VCOM和子画素电极,也就是内嵌式(In-Cell)触控技术,此来,触摸屏与LCD控制器之间须进行同步化,才能在扫描触摸屏时免除杂讯干扰;现在大多数智能手机的LCD也逐渐淘汰ACVCOM,转用更高品质的DCVCOM与 AMOLED显示器,并朝向直接贴合或In-Cell发展,藉以降低制造成本与产品厚度。

  LCD杂讯将耦合至触控传感器

  至于LCD杂讯如何耦合到触摸屏传感器,主要是其电路杂讯将耦合到触摸屏电路的两个电容。第一个电容为CLC,这个电容是在子画素与VCOM表面之间形成,其间液晶材料的作用相当于一个介电质。

  就DCVCOM显示器来说,驱动子画素的AC信号耦合到VCOM层就会变成杂讯,并传至整个面板。DCVCOM层看似是一个良好的AC接地端,因为以DC 电压维持这个节点;但事实上则会削弱杂讯,因为VCOM层是由电阻相当高的ITO制成,此处将发生第二个杂讯耦合电容的情况--CSNS。

  CSNS在VCOM层与电容传感器之间形成,VCOM层剩馀的杂讯电压会透过CSNS耦合到电容式触摸屏传感器,并传至触控面板控制器的接脚。对ACVCOM显示器而言,由于以AC波型驱动VCOM,因此LCD杂讯也会透过CSNS直接耦合到触摸屏传感器。

  量测与分析LCD杂讯的方法相当简单,可用一个导电金属连结到示波器探棒,或采用一片面朝下的铜片,然后直接覆盖在显示器的表面(不要附加触摸屏传感器)。另外也可用大铜板或一片铜带,但要注意杂讯强度会随着导体尺寸缩小而降低,因此最好覆盖整个表面,藉以把示波器的耦合误差减至最小。

  图3显示撷取到的ACVCOM信号波形,其中通常含有一个高强度基频,其波形接近方波。ACVCOM运作频率一般介于5k~25kHz之间,通常基频频率会对应到LCD每列画素更新(扫描线频率)的速度。

  传感器

  图3 ACVCOM显示器耦合杂讯与时间关系图

  图4则显示实际撷取到的DCVCOM波形。DCVCOM波形类似数个尖锐的高频脉冲,没有类似ACVCOM的高强度基频,但其谐波量可轻易冲高到 50k~300kHz,短暂的脉冲对应到子画素电极驱动信号。DCVCOM杂讯的特性和显示影像有高度相依性,最糟状况的影像通常是整个屏幕上以棋盘状排列的黑白交错画素(看起来接近灰色);但是在分析DCVCOM显示器特性之前,请务必测试多种不同影像。

  传感器

  图4 DCVCOM显示器耦合杂讯电压与时间关系图

  降低LCD杂讯 触控IC商祭出五大招

  设计者要确实降低影响触控面板控制器的显示杂讯,可利用几种方法,包括削减杂讯强度、避开杂讯的频率、导入数字滤波器、改良触控传感器设计或加强触摸屏与LCD面板的同步化。

  一般来说,设计工程师可以用一层强固的ITO覆盖住整个显示器,此遮蔽层置放于显示器与触控面板传感器之间,直接连结电路接地端,因此显示杂讯会直接传到接地端而不是触控面板控制器。遮蔽层在减少杂讯方面通常效率颇高,不过,由于会增加触控面板制造成本,加上会减少面板的透光度使影像品质略受影响,因此较不受业者青睐。

  相形之下,挑选适合的运作频率,让触控控制器的频率不同于LCD杂讯频率则是最佳选项之一。对此种方法而言,导入能应付大量尖峰杂讯的触控控制器,并且避免触摸屏感测电路过度饱和,有助达成降杂讯的目标。

  此外,窄频接收器有助于配合杂讯尖波(Spikes)进行调整,还能帮助在撷取到的波形产生快速傅立叶转换(FFT),以便了解应把触摸屏运作频率设定在哪裡,如图5显示DCVCOM时域波形的FFT。目前触控控制器制造商也以开发出许多自动工具,能帮助挑选理想的运作频率,其中许多工具能扫描触摸屏运作频率,还能同时监视杂讯。

  传感器

  图5 DCVCOM耦合杂讯与频率FFT关系图

  此外,数字滤波器对降低杂讯亦有很大帮助。工程师有许多线性与非线性滤波器可挑选,对不同的应用各有优缺点。线性滤波器方面,传统无限脉冲响应 (Infinite Impulse Response, IIR)或有限脉冲响应(Finite Impulse Response, FIR)滤波器,虽然在降低杂讯方面表现不错,但在追踪屏幕上手指碰触点的速度会有点迟钝。

  如今业界已针对这些滤波器进行许多改良,带来更好的手指追踪性能。其他非线性滤波器也能降低杂讯,尤其针对含有高强度但不常出现的杂讯尖波的脉冲杂讯。另外有少数滤波器能聪明的辨识LCD杂讯,并把杂讯从实际信号分离出来。含有硬体滤波器的触控控制器会为产品加分不少,因能节省杂讯处理的时间与功耗。

  由于触控传感器对整体产品的效能而言相当重要,因此,许多新型传感器设计也纷纷朝向能降低显示杂讯的研发方向迈进。其中一种热门方桉就是曼哈顿(Manhattan),取这个名字是因为它的样式酷似纽约曼哈顿地区的街道,为完美的水平与垂直排列(图6)。

  传感器

  图6 曼哈顿触控传感器架构示意图

  触控传感器包含发送器(TX)与接收器(RX),所有真正多点触控的传感器都能驱动TX,并在RX上接收信号。在曼哈顿传感器设计中,TX占位相当宽,位置在RX之下;RX则较窄,因为要消除寄生电容以及减少杂讯耦合。

  总而言之,曼哈顿传感器让TX传感器能削减大部分的杂讯,且不会让杂讯传到RX,现今业界均采用许多精密的曼哈顿衍生技术。

  In-cell实现触控面板与LCD同步化

  最后,触控面板与LCD之间的同步化,亦是降低显示杂讯的选项之一。事实上,这绝对须仰赖In-Cell设计才能实现。触控面板控制器要进行同步化,可透过监看LCD驱动器的水平与垂直同步信号,分别名为HSYNC(Horizontal Synchronization)与VSYNC(Vertical Synchronization),进一步与LCD面板同步。

  值得注意的是,在ACVCOM解决方桉中,有些触控面板控制器能直接从触摸屏传感器挑出杂讯,随即开始扫描,不须藉由监看LCD驱动器的HSYNC与VSYNC信号;此种ACVCOM的同步化相当直接,因为基频强度很高且频率很低。

  相形之下,DCVCOM就比较困难,因为杂讯频率较高,触控面板控制器的扫描与静止期之间需要精准的时序调整。

  随着手机做得愈来愈薄,触控面板控制器会暴露在更多的显示杂讯下,这是因为显示器与触摸屏传感器之间有更紧密结合的电容耦合,促使各界更专注于显示器如何运作,显示杂讯究竟来自哪裡,如何量测显示杂讯,以及有哪些降低显示杂讯的选项。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分