智能硬件电子电路设计图集锦TOP7 —电路图天天读(158)

嵌入式类电子电路图

51人已加入

描述

  TOP1 智能电动平衡车电路设计图

  近年来,两轮自平衡电动车以其行走灵活、便利、节能等特点得到了很大的发展。国内外有很多这方面的研究,也有相应的产品。两轮平衡电动车的运作原理主要是建立在一种被称为“动态稳定”(Dynamic Stabilization)的基本原理上,也就是车辆本身的自动平衡能力。以内置的精密固态陀螺仪(Solid-State Gyroscopes)来判断车身所处的姿势状态,透过精密且高速的中央微处理器计算出适当的指令后,驱动马达来做到平衡的效果。

  智能蓝牙

  电源接口电路图

  智能蓝牙

  测速模块接口

  智能蓝牙

  单片机最小系统

  车主控模块主要由稳压模块、isp下载口、无线模块、加速度传感器、陀螺仪、74ls04s施密特触发器、电源指示灯组成。其中主控芯片的主要功能是采集加速度传感器、陀螺仪、光电编码器、以及无线模块的数据进行运算,然后进行反馈。不仅是主要的数据运算中心又是控制中心。

  更多智能硬件资料集锦,详情请进入》》》


  TOP2 采用MSP430的机器人定位系统电路

  对于在室外环境工作的移动机器人通常使用惯导/卫星组合导航方式。惯性导航系统具有完全自主、抗干扰强、隐蔽能力好和输出参数全面等优点,但它的鲁棒性极低,误差会不断随时间累积发散。卫星导航系统具有精度高、定位范围广和误差不随时间累积等优点,但其自主性差、易受外界遮挡和干扰、接收机数据更新频率低等缺点。因此工程上常常将两者互补结合使用,组成卫星/惯性组合导航系统。

  本文以低功耗MSP430F149为核心,设计了能够同时实现卫星导航(GNSS)接收机、惯性测量单元(IMU)、气压高度等导航信息的高速采集与高速合路传输,并进行初步导航定位信息融合的导航系统,即可为室外移动机器人提供直接的导航服务,也可作为高精度组合导航系统的原始测量信息高速采集系统。系统设计的关键是利用单片机有限的接口资源实现了多传感器信息并行采集,设计了有效的数据同步方法,解决了气压传感器数据手册疏漏导致的无法接入问题,给出了机器人组合定位的基本方法。系统充分利用了MSP430F149单片机的能力,具有结构简单、低功耗、对传感器具有普适性等优点。

  本系统由电源、气压计接口、IMU接口、 GNSS接收机接口、SPI转UART模块及MSP430F149构成。系统组成如图1所示。组合导航系统的功能实现分为IMU数据接收与解析、GNSS 数据接收与解析、气压计数据接收与解析、组合导航解算以及数据输出五个部分。IMU数据接收与解析功能用来获取导航解算中需要的加速度和角速度信息;GNSS数据接收与解析功能用来获取导航解算中需要的位置和速度信息(松耦合组合)或者 GNSS伪距和伪距率(紧耦合组合);气压计数据接收与解析功能用来获取高度信息;组合导航解算功能为系统核心,用来进行组合导航解算;数据的输出包括原始数据包的整合输出和解算结果的输出。

  智能蓝牙

  图1 系统组成结构图

  本文所使用的惯性器件和GNSS接收机都是RS-232电平的UART接口,具有通用性,用户可根据成本考虑不同精度的设备。气压计选用美国MEAS公司生产的MS5803-02BA,已经固化在电路中。

  微控制器接口

  整个组合导航定位系统需要三个UART接口和两个SPI接口。其中两个UART接口由430单片机自带的UART资源提供,另外一个UART接口由 GPIO模拟SPI通过MAX3111E芯片转化得到;两个SPI接口由GPIO模拟得到。另外需要一个外部中断引脚捕获秒脉冲信号(PPS)、一个外部中断引脚捕获MAX3111E中断信号。MSP430F149管脚资源分配如表1所示。

  电源电路

  本系统供电需求为3.3V供电,因此采用AMS1117稳压芯片,接入5V电源即可输出3.3V稳定电压,可提供1A电流,满足系统供电需求。电路设计如图2所示。

  智能蓝牙

  图2 电源电路

  IMU器件及GNSS接收机接口电路

  IMU器件及GNSS接收机都采用UART接口方式接入,采用RS232协议。因此可使用430单片机上自带的两个UART接口,但是需要进行TTL电平与RS232电平转换。这里采用常见的MAX3232芯片,电路设计如图3所示。

  智能蓝牙

  图3 IMU及GNSS接口电路

  气压计MS5803-02BA接口电路

  MS5803-02BA[3]是由MEAS公司生产的数字压力传感器,分辨率达10cm。芯片内部包含一个高线性的压力传感器和一个内部工厂标定系数的超低功耗24位ΔΣ型ADC。该款芯片有SPI和I2C两种接口方式,通过芯片的PS引脚配置了选择不同的接口方式(PS置低时,采用SPI工作模式;PS置高时,采用I2C工作模式)。本文所阐述的定位系统将气压计配置为SPI工作模式。MS5803-02BA与微控制器间的接口电路设计如图4所示。

  智能蓝牙

  图4 MS5803-02BA接口电路

  MS5803-02BA的控制命令包括复位命令、温度ADC命令、气压ADC命令、ADC读取命令、PROM读取命令。控制命令如表2所示。控制命令通过SDI口移位输入,响应结果从SDO移位输出。输入的电平判定在时钟信号的上升沿,输出的电平判定在时钟信号的下降沿。输出的气压值可以进行温度补偿,需要利用芯片内部PROM中的系数来补偿。ADC读取命令输入之后,输出24位ADC结果;PROM读取命令输入之后,输出16位补偿系数。

  本文基于MSP430F149单片机设计的室外移动机器人组合导航定位系统,通过接口的扩展使得该款定位系统能够接入IMU、GNSS接收机、气压计三路信息,完成初步导航定位服务功能,同时可作为多路数据采集设备,将多路数据整合到一路高速输出接口,用于进一步的高精度导航解算。该系统根据使用者的需求不同,可接入不同成本和精度的设备,只要满足RS-232协议即可。笔者将其实际运用,整个系统充分利用该款单片机的资源,结构简单、功耗低、适用范围广,不仅可作为初步导航定位服务的设备,还可作为多路数据采集设备。

  TOP3 AT89C2051多路舵机控制电路详解

  舵机是一种位置伺服的驱动器。它接收一定的控制信号,输出一定的角度,适用于那些需要角度不断变化并可以保持的控制系统。在微机电系统和航模中,它是一个基本的输出执行机构。以FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。

  舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA66881。的12脚进行解调,获得一个直流偏置电压。该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。该输出送人电机驱动集成电路BA6686,以驱动电机正反转。当电机转速一定时,通过级联减速齿轮带动电位器 R。,旋转,直到电压差为O,电机停止转动。舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。

  智能蓝牙

  舵机的控制方法

  电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20 ms(即频率为50 Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用围 3来表示。

  智能蓝牙

  舵机控制器硬件电路设计

  从上述舵机转角的控制方法可看出,舵机的控制信号实质是一个可嗣宽度的方波信号(PWM)。该方波信号可由FPGA、模拟电路或单片机来产生。采用 FPGA成本较高,用模拟电路来实现则电路较复杂,不适合作多路输出。一般采用单片机作舵机的控制器。目前采用单片机做舵机控制器的方案比较多,可以利用单片机的定时器中断实现PWM。该方案将20ms的周期信号分为两次定时中断来完成:一次定时实现高电平定时Th;一次定时实现低电平定时T1。Th、 T1的时间值随脉冲宽度的变换而变化,但,Th+T1=20ms。该方法的优点是,PWM信号完全由单片机内部定时器的中断来实现,不需要添加外围硬件。缺点是一个周期中的PWM信号要分两次中断来完成,两次中断的定时值计算较麻烦;为了满足20ms的周期,单片机晶振的频率要降低;不能实现多路输出。也可以采用单片机+8253计数器的实现方案。该方案由单片机产生计数脉冲(或外部电路产生计数脉冲)提供给8253进行计数,由单片机给出8253的计数比较值来改变输出脉宽。该方案的优点是可以实现多路输出,软件设计较简单;缺点是要添加l片8253计数器,增加了硬件成本。本文在综合上述两个单片机舵机控制方案基础上,提出了一个新的设计方案,如图4所示。

  智能蓝牙

  该方案的舵机控制器以AT89C2051单片机为核心,555构成的振荡器作为定时基准,单片机通过对555振荡器产生的脉冲信号进行计数来产生PWM 信号。该控制器中单片机可以产生8个通道的PWM信号,分别由AT89C2051的P1.0~Pl.7(12~19引脚)端口输出。输出的8 路PWM信号通过光耦隔离传送到下一级电路中。因为信号通过光耦传送过程中进行了反相,因此从光耦出来的信号必须再经过反相器进行反相。方波信号经过光耦传输后,前沿和后沿会发生畸变,因此反相器采用CD40106施密特反相器对光耦传输过来的信号进行整形,产生标准的PWM方波信号。笔者在实验过程中发现,舵机在运行过程中要从电源吸纳较大的电流,若舵机与单片机控制器共用一个电源,则舵机会对单片机产生较大的干扰。因此,舵机与单片机控制器采用两个电源供电,两者不共地,通过光耦来隔离,并且给舵机供电的电源最好采用输出功率较大的开关电源。该舵机控制器占用单片机的个SCI串口。串口用于接收上位机传送过来的控制命令,以调节每一个通道输出信号的脉冲宽度。MAX232为电平转换器,将上位机的RS232电平转换成TTL电平。

  实现多路PWM信号的原理

  智能蓝牙

  在模拟电路中,PWM脉冲信号可以通过直流电平与锯齿波信号比较来得到。在单片机中,锯齿波可以通过对整型变量加1操作来实现,如图5所示。假定单片机程序中设置一整型变量SawVal,其值变化范围为O~N。555振荡电路产生的外部计数时钟信号输入到AT89C2051的INTO脚。每当在外部计数时钟脉冲的下降沿,单片机产生外部中断,执行外部中断INT0的中断服务程序。每产生一次外部中断,对SawVal执行一次加1操作,若SawVal已达到最大值N,则对SawVal清O。SawVal值的变化规律相当于锯齿波,如图5所示。若在单片机程序中设置另一整型变量DutyVal,其值的变化范围为 O~N。每当在SawVal清0时,DulyVal从上位机发送的控制命令中读入脉冲宽度系数值,例如为H(0≤H≤N)。若 DutyVal≥SawVal,则对应端口输出高电平;若DutyVal《Sawval,则对应端口输出低电平。从图5中可看出,若改变 DutyVal的值,则对应端口输出脉冲的宽度发生变化,但输出脉冲的频率不变,此即为PWM波形。

  TOP4 无人机温度巡检信号调理电路

  目前无人飞行器主要飞行于大气对流层和平流层低层区间。该区间大气温度变化复杂,大气环境的温度过低或过高都将直接影响无人飞行器控制系统的正常工作。由于无人飞行器机身需要检测温度的部位较多,监测目标比较分散,使用单一结构的温度传感器或结冰探测仪表难以实时、全面地掌握整个机身表而温度状况,因此,本设计结合已有的民用多路测温技术,提出一种基于FPGA的适用于无人飞行器机身各部位温度检测和功能事务管理的多路温度巡检系统。该系统可在无人飞行器飞行过程中,根据需要循环监测各部位的温度状况,以便能够及早测出机身可能出现的结冰低温并向系统发出报警信号使飞机及时飞离结冰区域或开启除冰设计,从而达到保障飞行安全的目的。

  设计方案的总体结构

  无人飞行器温度巡检装置的结构框图如图1所示。

  智能蓝牙

  本设计采用FPGA作为核心芯片,电源电路供电后,信号调理电路通过铂电阻传感器PT100将采集的电压信号通过放大器放大后送给A/D采样电路,A /D采样电路通过采样把模拟信号转换为数字信号后送给FPGA进行处理,处理数据后FPGA自动把处理结果送出,通过液晶显示并且与键盘电路设定的值进行比对,如果超出设定值范围,FPGA送出信号,使得蜂鸣器电路报警,继电器电路响应,启动加热装置,图1给出了系统的整体框图。按照系统的功能要求,装置的硬件电路依据其功能划分为信号调理模块、A/D采样模块、FPGA最小系统模块等部分。

  信号调理模块

  系统采用惠斯通电桥接入铂电阻传感器PT100信号,如图2所示。

  智能蓝牙

  图2中INA、INB之差与PT100阻值变化呈线性关系,通过将INA、INB变化值采样再对应铂电阻传感器P100刻度表即可换算得到实测温度。考虑到铂电阻传感器PT100探头产生的信号非常微弱,很容易受到噪声干扰,所以放大电路选择单运放构成的仪表放大器。仪表放大器拥有差分式结构,对共模噪声有很强的抑制作用,同时拥有较高的输入阻抗和较小的输出阻抗,非常适合对微弱信号的放大。图2中R3,R4,R5,R6,R7,R8均采用低温漂的精密电阻,R2为多圈精密可调电阻。通过电路可以计算出:

  A/D采样模块

  系统选用 AD7476作为采样芯片。该芯片是12位低功耗逐次逼近型ADC,采用单电源工作,电源电压为2.35V至5.25V,最高吞吐速率可达 1MSPS,完全满足本系统的采样精度和速度的要求。该芯片内置一个低噪声、宽带宽采样保持放大器,可处理6MHz以上的输入频率。AD转换过程和数据采集过程通过CS和串行时钟SCLK进行控制,从而为器件与FPGA接口创造了条件。输入信号在CS的下降沿进行采样,而转换同时在此处启动,转换速率取决于SCLK的时钟频率。图3为AD7476的典型接线电路。

  智能蓝牙

  软件设计

  温度巡检装置的软件以VHDL语言为基础,采样模块化的设计思路编程,分为液晶显示模块、AD采样模块、键盘输入模块、报警模块和PWM控制模块模块。图4给出了各模块之间的关系图。

  智能蓝牙

  系统首先通过AD采样模块对温度进行采样,将采样的数据送入温度检测模块进行处理。温度检测模块的任务是计算将采样来的温度值与系统的预设值之间的差值,利用差值的大小来控制PWM模块输出脉冲宽度不同的脉冲波,通过脉冲波开控制继电器的通断,从而达到温度的恒定控制。

  系统的定标

  首先用高精度电阻箱代替铂电阻传感器Pt100对测量系统进行定标。根据式1所示的铂电阻传感器Pt100电阻和输出电压之间的关系,通过改变电阻箱的取值来设定相对应的测试温度点标称值,经过测量系统、A/D采样的计算,得到测量温度显示值。根据初测数据对测量电路、补偿电压进行校准后,完成对系统的定标工作。

  系统实测

  将铂电阻传感器Pt100接入测量系统,并置入高精度恒温箱中(温控精度0.01℃)进行整个温度测量系统定标测量。测量时要注意恒温箱的密封,以提高环境温度稳定性;恒温箱温度稳定后,每隔1min对同一温度点进行20次测量。由表1中数据可见,测量系统的最大误差为0.009℃,说明Pt100 铂电阻传感器的定标误差较小,精度也较高,能满足高精度温度测量系统的测量要求,但温度高端误差较大,可能与恒温箱温度控制精度有关,有待于进一步定标。

  智能蓝牙

  本文提出了基于FPGA的无人飞行器温度巡检装置的设计方案,该方案中所设计的无人飞行器温度巡检装置利用FPGA快速性、可并行性、延时固定性等特点,能够快速,准确的检测无人机的各部件温度。通过实验验证,系统的最大误差不超过0.01度,完全满足无人飞行器对温度采集的要求。

  TOP5 四轴飞行器三相六臂全桥驱动电路

  四轴飞行器是近来在专业与非专业领域都非常火爆的技术产品。下面这篇文章针对四轴飞行器无位置传感器无刷直流电机的驱动控制,设计开发了三相六臂全桥驱动电路及控制程序。设计采用ATMEGA16单片机作为控制核心,利用反电势过零点检测轮流导通驱动电路的6个MOSFET实现换向;直流无刷电机控制程序完成MOSFET上电自检、电机启动软件控制,PWM电机转速控制以及电路保护功能。该设计电路结构简单,成本低、电机运行稳定可靠,实现了电机连续运转。近年来,四轴飞行器的研究和应用范围逐步扩大,它采用四个无刷直流电机作为其动力来源。无刷直流电机为外转子结构,直接驱动螺旋桨高速旋转。

  无刷主流电机的驱动控制方式主要分为有位置传感器和无位置传感器的控制方式两种。由于在四轴飞行器中的要求无刷直流电机控制器要求体积小、重量轻、高效可靠,因而采用无位置传感器的无刷直流电机。本文采用的是朗宇X2212 kv980无刷直流电机。无刷直流电机驱动控制系统包括驱动电路和系统程序控制两部分。采用功率管的开关特性构成三相全桥驱动电路,之后使用DSP作为主控芯片,借助其强大的运算处理能力,实现电机的启动与控制,但电路结构复杂成本高,缺乏经济性。直流无刷电机的换向采用反电势过零检测法,一旦检测到第三相的反电势过零点就为换向做准备。反电势过零检测采用虚拟中性点的方法,通过检测电机各相的反电势过零点来判断转子位置。而基于电机三相绕组端电压变化规律的电机电流换向理论,可以大大提高系统控制精度。

  本文无刷直流电机的驱动电路采用三相六臂全桥电路,控制电路的管理控制芯片采用 ATmega 16单片机实现,以充分发挥其高性能、资源丰富的特点,因而外围电路结构简单。无刷直流电机采用软件启动和PWM速度控制的方式,实现电机的启动和稳定运行,大大提高四轴飞行器无刷直流电机的调速和控制性能。

  三相六臂全桥驱动电路

  无刷直流电机驱动控制电路如图1 所示。该电路采用三相六臂全桥驱动方式,采用此方式可以减少电流波动和转矩脉动,使得电机输出较大的转矩。在电机驱动部分使用6个功率场效应管控制输出电压,四轴飞行器中的直流无刷电机驱动电路电源电压为12 V.驱动电路中,Q1~Q3采用IR公司的IRFR5305(P沟道),Q4~Q6为IRFR1205(N 沟道)。该场效应管内藏续流二极管,为场效应管关断时提供电流通路,以避免管子的反向击穿,其典型特性参数见表1.T1~T3 采用PDTC143ET 为场效应管提供驱动信号。

  智能蓝牙

  表1 MOSFET管参数

  由图1 可知,A1~A3 提供三相全桥上桥臂栅极驱动信号,并与ATMEGA16单片机的硬件PWM驱动信号相接,通过改变PWM信号的占空比来实现电机转速控制;B1~B3提供下桥臂栅极驱动信号,由单片机的I/O口直接提供,具有导通与截止两种状态。

  智能蓝牙

  图1 无刷直流电机三相六臂全桥驱动电路

  无刷直流电机驱动控制采用三相六状态控制策略,功率管具有六种触发状态,每次只有两个管子导通,每60°电角度换向一次,若某一时刻AB 相导通时,C 相截至,无电流输出。单片机根据检测到的电机转子位置,利用MOSFET的开关特性,实现电机的通电控制,例如,当Q1、Q5 打开时,AB 相导通,此时电流流向为电源正极→Q1→绕组A→绕组B→Q5→电源负极。类似的,当MOSFET 打开顺序分别为Q1Q5,Q1Q6,Q2Q6,Q2Q4,Q3Q4,Q3Q5时,只要在合适的时机进行准确换向,就可实现无刷直流电机的连续运转。

  反电势过零检测

  无刷直流电机能够正常连续运转,就要对转子位置进行检测,从而实现准确换向。电机转子位置检测方式主要有光电编码盘、霍尔传感器、无感测量三种方式。由于四轴飞行器无刷直流电机要求系统结构简单、重量轻,因而采用无位置传感器的方式,利用第三相产生的感生电动势过零点时刻延迟30°换向。虽然该方法在电机启动时比较麻烦,可控性差,但由于电路简单、成本低,因而适合于在正常飞行过程中不需要频繁启动的四轴飞行器电机。

  由于无刷直流电机的两相导通模式,因而可以利用不导通的第三相检测反电势的大小。如图2反电势检测电路,中性点N 与单片机的AIN0 相接,Ain,Bin,Cin分别接单片机的ADC0,ADC1,ADC2.不停地比较中性点N电压与A,B,C三相三个端点电压的大小,以检测出每相感生电动势的过零点。ATMEGA16单片机模拟比较器的正向输入端为AIN0,负向输入端根据ADMUX寄存器的配置而选择 ADC0,ADC1,ADC2,从而利用了单片机自带的模拟比较器的复用功能。当A,B相通电期间,C相反电势与中性点N进行比较,类似的,就可以成功检测出各相的过零事件。

  智能蓝牙

  图2 反电势检测电路

  电机的反电势检测出来后,就可以找到反电势的过零点,在反电势过零后延迟30°电角度进行换向操作。

  驱动电路采用三相六臂全桥电路,MOSFET 作为开关元件,利用ATmega 16 单片机作为控制芯片,反电势过零检测以及软件启动的控制方式,并延迟30°进行换向。正常启动后,单片机输出PWM 实现无刷直流电机转速调节。同时设计了电压、电流监测电路,保证系统安全,因而,该系统能够正常驱动无位置传感器无刷直流电机,并且能够应用于四轴飞行器。

  TOP6 揭秘智能照明系统硬件电路

  对一些照明时间较长、照明设备较多的场所,其照明系统的使用浪费现象屡见不鲜。由于缺乏科学管理和管理人员的责任心不强,有时在借助外界环境能正常工作和夜晚室内空无一人时,整个房间内也是灯火通明。这样下来,无形中所浪费的电能是非常惊人的。据测算,这种现象的耗电占其单位所有耗电的40%左右。因此,有必要在保证照明质量的前提下,实施照明节能措施。这不仅可以节约能源,而且会产生明显的经济效益。

  本系统主要由光照检测电路、热释电红外线传感器及处理电路、单片机系统及控制电路组成。工作时,光照检测电路和热释电红外线传感器采集光照强弱、室人是否有人等信息送到单片机,单片机根据这些信息通过控制电路对照明设备进行开关操作,从而实现照明控制,以达到节能的目的。

  系统硬件设计

  按图1构成的系统硬件电路如图2所示。为了使系统功能更加完善,在该系统中可以增加时间显示电路,用于显示当前的时间。由于该部分硬件与软件均已成熟,在此不做详细介绍。

  智能蓝牙

  中心控制模块

  目前较为流行的单片机有AVR和51单片机,从系统设计的功能需求及成本考虑,51单片机性价比更高。AT89C52是拥有2个外部中断、2个16位定时器、2个可编程串行UART的单片机。中心控制模块采用AT89C52单片机已完全满足设计需要,实现整个系统控制。

  光照检测电路

  如图2所示,当外界环境光照强时,光敏电阻R13阻值较小,则A点电平较低;当外界环境光照弱时,光敏电阻R13阻值较大,则A点电平较高,将此电平送到单片机,由程序控制是否实现照明。

  热释电传感器及处理电路

  热释电红外线传感器

  热释电红外传感器能以非接触形式检测出人体辐射的红外线,并将其转变为电压信号。热释电传感器具有成本低、不需要用红外线或电磁波等发射源、灵敏度高、可流动安装等特点。实际使用时,在热释电传感器前需安装菲涅尔透镜,这样可大大提高接收灵敏度,增加检测距离及范围。实验证明,热释电红外传感器若不加菲涅尔透镜,则其检测距离仅为2 m左右;而配上菲涅尔透镜后,其检测距离可增加到10 m以上。由于热释电传感器输出的信号变化缓慢、幅值小(小于1 mV),不能直接作为照明系统的控制信号,因此传感器的输出信号必须经过一个专门的信号处理电路,使得传感器输出信号的不规则波形转变成适合于单片机处理的数字信号。根据以上要求,人体热释电检测电路组成框图如图3所示。

  智能蓝牙

  信号处理电路

  本设计采用BIS0001来完成对热释电传感器输出信号的处理。BIS0001是一款具有较高性能的热释电传感器信号处理集成电路,它主要由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成。由BIS0001构成的信号处理电路如图4所示。

  智能蓝牙

  图 4中,热释电传感器S极输出信号送入BIS0001的14脚,经内部第一级运算放大器放大后,由C3耦合从12脚输入至内部第二级运算放大器放大,再经电压比较器构成的鉴幅器处理后,检出有效触发信号去启动延迟时间定时器,最后从12脚输出信号(Vo)送入单片机进行照明控制。BIS0001的1脚接高电平,使芯片处于可重复触发工作方式。输出Vo(高电平)的延迟时间Tx由外部R8和C7的大小调整;触发封锁时间Ti由外部R9和C6的大小调整。

  延时时间选择电路

  系统在AT89C52的P1中设置了延时时间选择电路,其目的是在环境光照较弱时,照明设备延时一段时间后自动熄灭。电路通过 P1.0~P1.3设置4个延时时间,当P1.0~P3.0无开关闭合时,系统按初始值进行延时;当P1.0~P1.3有开关闭合时,程序从 P1.3~P1.0进行检测,若检测到某一端口为低电平时,则系统按当前端口设置的值进行延时。设置时间关系值如表1所示。

  智能蓝牙

  输出控制电路

  单片机对光照检测电路和传感器处理电路输出的信号进行检测,输出控制信号由单片机的P2.0输出。在室内环境光照较强或光较弱但室内又无人时,P2.0 输出高电平,此时三极管V1截止,继电器J1不工作,则接在220 V上的照明设备不亮。在室内光照较弱且传感器检测室内有人时,则P2.0输出低电平,此时三极管V1导通,继电器J1工作,则220 V交流电通过继电器加到照明设备上,照明设备正常点亮。

  本次设计的智能照明控制系统,适用于学校、商场等大面积室内场所的照明控制,可以有效地对照明设备进行自动控制,达到科学管理与节能的目的。实验证明,该系统结构简单、安装方便、工作稳定、可靠性高。若在该系统中增加报警装置,也可实现自动报警功能。

  TOP7 智能移动终端系统电路设计详解

  随着技术的发展,各种移动定位终端已经深入我们的生活,而同时人们需要更多基于位置的安全保障,于是也向GPS提出了新的要求,能否提供一种嵌入式GPS,提供安防联防诸如巡查过程中保安移动信息服务,位置监控调配服务等。不言而喻,GPS、微型嵌入式终端等新技术,必然成为GIS中一个新兴的重要研究领域。本设计主要实现电子巡查系统(图1)智能终端两个关键技术环节:GPS信息获取以及空间位置信息、总台命令的无线交互传输。

  以往的保安巡查没有太多设备,人均一个对讲机,一条警棍。随着GPS的出现,基站即总台对每个保安的地理位置信息的掌握成为可能。即每个保安配备一套 GPS定位设备,以及一套将自身位置信息发送给总台的无线收发设备。由于给每个保安重新配备一套设备成本高昂,而且淘汰已有的对讲机不够现实,于是,将对讲机作为已有的信道载体,便一举两得,只须对旧的对讲机作局部电路的调整修改,就能既方便又实际地构筑前所未有的安全体系。

  

  图1 电子巡查系统应用

  利用主板与各个功能模块的结合组成移动智能终端。它包括MCU即单片机AT89S52、GPS接收模块、模拟调制解调芯片MSM6882、液晶显示模块 LCD1602、语音合成芯片XF1M01,见图2。移动智能终端完成正向GPS数据采集、处理和发送,以及反向对总台命令进行接收、识别、执行。其中 GPS模块一秒钟输出一次GPS信息,MCU将其收录,并在显示模块上显示自身经纬度和时间日期。然后通过调制解调芯片将数据加载到对讲机然后无线传输给总台,完成正向任务。

  智能蓝牙

  图2 智能终端结构

  接着会有大约半秒种时间段等待总台命令,若收到总台的命令,即根据数据帧判断命令类型,提取相应数据,经MCU处理后执行相应的显示操作和语音提示操作,完成反向任务。当终端接收到目标命令信息并处理执行后,重新发送回总台时前导码改变以表示命令接收成功,使总台作出相应处理。例如前导码可以从 “start”变成“start1”。

  和以往功能单一,界面欠缺人性化的便携式设备相比,这个GPS数据采集处理传输一体化智能终端有了功能的扩展。首先,每个保安可以在LCD显示屏上看到自己的所在经纬度、时间日期等信息,给保安一个直观,清晰的地理位置感。另外,可以实时接收来自总台的命令信息,经MCU处理后,将总台派遣前往的地点经纬度现实在LCD屏幕与自身位置加以对比,实现信息的透明化。另一个改进是语音提示智能化以及角度偏置的计算,通过接收总台发出的目标派遣地点经纬度,与自身位置比较后,明确清晰地提示保安该往什么方向走多远。系统终端采用51系列的单片机作MCU。用调制解调芯片把信号加载到对讲机实现无线传输代替独立的无线通信模块。液晶屏选取简单易用的LCD1602。方案大大降低成本,而且稳定可靠。

  如图所示,在1秒时隙内,先接收GPS信号(图中GPS表示),经采集后再发送给调制芯片(图中Send_data),然后控制LCD显示(图中 LCD),显示完毕后开始等待接收总台命令信号,等待直至下一秒的到来,相隔大约0.6秒。若下一秒到来前没有命令信号则转入下一个循环;若下一秒到来前有接收到命令信号则进入接收程序(图中Receive_data),经过短暂的数据处理时间段(图中process)后再启动显示(图中 LCD2),然后驱动语言芯片发音(图中Speak)。成功收到命令信息后,下一周期的“Send_data”将改变前导码以反馈给总台。

  硬件电路设计

  智能蓝牙

  图5 智能终端整体硬件电路

  MCU

  本设计采用AT89S52作为MCU,其中P0口与P1口的2,3,4控制LCD1602;P1口的5,6,7作为同步串口控制调制解调芯片MSM6882;串口的RX接收GPS数据,TX发送语音数据(见图5)。

  GPS模块

  设计采用u-blox公司的GPS接收模块nr-86,该模块体积小重量轻,集成高灵敏度、低功耗的NemeriX芯片方案于设计中。本模块能快速定位, 1Hz导航更新频率,并可以对16颗卫星进行同时跟踪。支持WGS-84的数据协议。它接口简单,TTL电平串口输出NMEA-0183格式的数据,只须连接模块的TX端与51单片机的RX端,另外单片机P1.0与模块的RESET端相连,以控制模块复位。本设计采用NMEA默认格式中的$GPRMC协议,是由于该协议精简,信息覆盖面广,数据容易被单片机采集处理。

  调制解调芯片MSM6882

  在设计时,89S52单片机通过同步串口与该芯片相连,然后由芯片把信号调制到模拟信道,再将信号加载到对讲机(PTT)上,由对讲机实现无线传输。单片机CLK引脚的输入时钟周期应在0.42μs到1.35μs范围内,通过可调电阻调节调制信号输入到电台的幅值。信号一路经信号限幅后送入 MSM6882的AI引脚,另外一路经放大、检波、幅值比较后送入单片机,以作为载波检测信号。当系统检测到该信号时,可以采取延时发送的方式来避免同频干扰和信道阻塞。

  语音合成芯片XF1M01

  语音合成芯片 XF1M01通过异步串口接收待合成的文本,它内含GB-2312汉字字库,外接单支三极管驱动扬声器,即可实现文本到声音(TTS)的转换,设计中音频输出通过功放再送给扬声器,以获得较大音量,适应户外环境。只须送给它汉字的内码(即16位二进制字符),即可读出一字,多送多读,因此对存放空间的要求要低,适合电子巡查系统的应用。芯片空闲时Ready端输出低电平,因此将其连至单片机P3.2,单片机即可扫描该引脚,当芯片空闲时就通过异步串口给它发送数据。传输波特率由Baud_0、Baud_1两个引脚决定,设计中采用的是9600bps。单片机的P1.1与芯片RESET端相连以控制芯片复位。

  设计了一个嵌入式智能移动定位终端,经过实物调试成功。巧妙利用低成本硬件实现了GPS的信号采集、处理、传输等的功能。设计通过低成本的设备改良制作出了智能移动终端,实现总台对保安位置等信息的掌握,监控。本设计巧妙地运用原有对讲机网络作为数字通信媒介,使得成本更低应用更方便。另外语音合成文本芯片的运用简化了硬件的开发。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分