PyCharm是一个流行的Python集成开发环境(IDE),它提供了丰富的功能,包括代码编辑、调试、测试等。在本文中,我们将介绍如何在PyCharm中训练机器学习模型。
import pandas as pd
data = pd.read_csv('data.csv')
data = data.dropna() # 删除缺失值
data = data[data['column'] != '异常值'] # 删除异常值
data['new_feature'] = data['existing_feature'] ** 2
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(data.drop('target', axis=1), data['target'], test_size=0.2, random_state=42)
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
importances = model.coef_[0]
feature_names = X_train.columns
importance_dict = dict(zip(feature_names, importances))
y_pred = model.predict(X_test)
from sklearn.metrics import accuracy_score, recall_score, f1_score
accuracy = accuracy_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
from sklearn.model_selection import GridSearchCV
param_grid = {'C': [0.1, 1, 10], 'penalty': ['l1', 'l2']}
grid_search = GridSearchCV(LogisticRegression(), param_grid, cv=5)
grid_search.fit(X_train, y_train)
from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X_train, y_train, cv=5)
全部0条评论
快来发表一下你的评论吧 !