使用800nm OCT光谱仪实现超深OCT成像
传统上,OCT成像需要使用更长的波长来探测单次扫描中超过几毫米的深度,但波长超过1100nm之后,就需要使用InGaAs探测器相机作为探测元件了,这是的整个OCT光谱仪的成本大幅增加。为此,美国Wasatch公司开发了一种拥有专利的独特光谱仪设计,使其能够使用800 nm OCT光谱仪实现高达12毫米的成像深度,为长距离成像在眼科、医学和无损检测中的经济高效应用开辟了新可能。
在眼科中,长距离成像有利于对整个前房(从角膜到晶状体)的检查,因为它允许在更短的时间内获得更完整的眼睛图像。如果配置得当,它甚至可以用于对整个眼睛进行成像。它还促进了视网膜的广域成像,视网膜的曲率需要更大的成像深度,尤其是在患者不太可能保持静止的临床环境中。
在医学中,长距离OCT在血管内和胃肠道应用中的腔内成像方面可以带来巨大好处。在这种情况下,感兴趣的结构可能距离成像导管超过几毫米,因此超出了典型的OCT成像窗口。较长的成像深度可以补偿成像探头与感兴趣区域之间距离的变化,从而促进更好的成像效果。
总体来讲,成像更深的能力有助于广域成像,因为可以在单次扫描中捕捉到曲面轮廓和结构的全貌。这对于材料加工应用中的无损检测也非常有用,因为某个待检测的槽或孔可能很深,此外还可以用于在增材制造中对复杂表面进行轮廓分析。
波长与成本的平衡难题
但目前主流方式有两种:扫频源光学相干断层扫描(SS-OCT:Swept Source Optical Coherence Tomography)和光谱域光学相干断层扫描(SD-OCT:Spectral Domain Optical Coherence Tomography)。这两种方法都使用多波长激光照射样品,然后测量返回的不同波长的散射光,通过对光谱进行傅里叶变换来检测不同深度的结构。不同的是SS-OCT使用扫频激光器对波长进行逐一扫描,并使用单点光电探测器捕捉信号,而SD-OCT则使用宽带光源加高分辨OCT光谱仪的组合来实现测量。
在SD-OCT系统中,宽带激光(一般为SLD,SLED或超连续谱光源)被分成两条路径:一路通向参考臂,另一路通向待测样品。来自这两条路径的光重新组合并干涉,产生的条纹图案由光谱仪读取,光谱仪将每个波长的光纤转化成数字信号输出。
当需要大于5毫米的成像深度时,会选择更长的中心波长,1300 nm就是这个穿透深度的OCT的首选波长。美国Wasatch公司的Cobra 1300光谱仪系列提供1.4-11.5毫米的成像深度(在空气中),具体取决于带宽。然而,随着带宽的增加,成像深度减小。因此,当需要更深的成像时,使用带宽较窄的系统。尽管1300 nm OCT为许多结构的大深度成像提供了足够的深度,但使用这种波长需要用到InGaAs相机,InGaAs相机相对于于800 nm SD-OCT的CCD或CMOS相机要昂贵得多。通过使用较短的中心波长(CWL),光谱仪成本可以降低约40%,但必须也要减少带宽(BW)以保持相同的空间分辨率。
但要想使用800 nm中心波长的宽带光源进行长距离成像系统,则工作光谱带宽需降至30 nm以下,才可以在12毫米的成像深度中保持等效的空间分辨率。这就对光谱仪的分辨率提出了极高的要求:光谱分辨率需低于0.02 nm!
使用Wasatch Cobra-S 800 OCT光谱仪进行长距离成像
为了将长距离成像的优势应用于800 nm SD-OCT,美国Wasatch公司运用了在光谱仪设计方面的专业知识,开发了一款具有超精细光谱分辨率的OCT光谱仪。这种拥有专利的光学设计的光谱仪就是Cobra-S 800光谱仪系列中的最新型号CS800-841/28。它能够在841 nm的中心波长上以28 nm的带宽实现0.015 nm的分辨率。这使得使用这款OCT光谱仪的系统的成像深度可以扩展到12毫米,将传统800nm SD-OCT的范围足足扩大了三倍。
美国Wasatch公司Cobra-S 800长距离成像型号OCT光谱仪通过优秀的光学设计做到了接近衍射极限的光学分辨率,并通过低串扰探测器将滚降(roll-off)降到非常低的水平。10毫米成像深度下的滚降小于12 dB,即使在扩展深度下也能确保高清晰度图像。空间分辨率与Wasatch Cobra 1300系列中的可比型号相似,甚至略好。
由于Cobra-S 800长距离成像型号的中心波长较短,组织中的散射会更高,尽管水中的吸收会更低。这可能会略微改变结构的对比度,在某些情况下可能会改善区分,例如某些内视网膜结构如神经节细胞。
总结
通过在更具成本效益的操作波长下提供可比的图像分辨率,800 nm的长距离成像有可能为长距离成像在眼科、医学和工业中的实际应用开辟新的机会。
全部0条评论
快来发表一下你的评论吧 !