可穿戴设备
可穿戴技术现在已经越来越火爆,而我们都希望看到接下来会发生什么,在现在的可穿戴设备领域,除了智能手表、运动追踪器和智能服装之外,已经出现了更多前沿的创新技术。
在未来的一年、五年甚至是十年里,我们将会看到更多的可穿戴设备新技术出现在我们的面前,而我们将进一步摆脱对智能手机的依赖,在手腕和云端之间建立更多的联系。
不用充电
柔性灵活的传感器对于智能服装产品来说是最重要的事情,但是也别忘了,除了将这些传感器缝到衣服里之外,如何为这些设备充电也是非常有趣的事情。而来自新西兰的StretchSense公司就发布了一种具备能量获取能力的柔性传感器。当被弯折时,这种特殊传感器可以产生并存储能量,并以此对电子设备进行供电。
这种传感器最直接的应用方向之一显然是在可穿戴设备领域。当内置于动作追踪器和健身腕带等设备的机身当中,这种传感器可从设备工作时所产生的自然移动中获取能量,从而彻底解决这类设备续航能力较弱的问题。
另外,韩国的科学家也研发出了一种具有高导电性的传感器,因此如果未来智能服装大发展,那么这种技术将是成功的关键。
检测有毒气体
我们经常讨论可穿戴设备如何检测我们的身体指标,但是有没有想过它们还能帮助我们免于受到周围环境的伤害呢?
来自麻省理工的科研人员就研制出了一种可穿戴的传感器,可以用来检测空气中微量的有毒气体。这种化学传感器重量只有一张纸大小,并且采用了由碳纳米管组成的电路,同时该团队在碳纳米管表面涂上一层被称为超分子聚合物的高分子材料,使其变成感应材料。当接触有毒气体时,超分子聚合物的化学键就会被部分破坏;而当超分子聚合物表面涂层被破坏后,碳纳米管导电性就会大幅上升。最后,传感器的信号会传送到手机或其它无线设备上,可以让手机或者无线设备在几秒内读出空气中是否存在有毒气体。
目前这项技术不仅适用于战场上的士兵,同时未来在医疗领域也有非常大的发展潜力。
超灵敏纳米传感器
现在有一种超敏感的纳米级传感器,甚至能追踪到雄性蜘蛛腹部的摩擦震动,对于可穿戴设备领域来说,同样具有重大的意义。
首尔国立大学的科学家就发明了这个纳米传感器系统,整套系统的独特之处在于,传感器间的缝隙间距达到了纳米级别,这也就保证了很高的传感灵敏度。具体说来,研究人员们在粘弹性聚合物表面添加20纳米厚度的铂金层,搭建了传感器框架。通过让表面的铂金变型延展,上下层之间便产生了空隙,暴露出底层的聚合物,研究人员便借助次测量传感器表面的电导系数。
未来这种技术可以被用到可穿戴设备上,除了用来检测心率变化之外,还可以帮助语言或听觉障碍的残疾人士拥有如“蜘蛛侠”一般的感知能力。
石墨烯无处不在
这种让人惊奇的材料是由单层碳原子排列而成的六边形,而研究人员希望它能够成为显示屏、电池甚至仿生移植等领域的最佳材料。它灵活、透明、但是比钢铁更耐用,并且还有利于电荷的传输。
而这种仿生学领域的应用未来也可以被应用到健康追踪领域,比如伦敦帝国理工学院的研究人员就将其使用在合成皮肤中,并且有望创造出高灵敏度的人造皮肤。同时还有像SweatSmart这样的石墨烯汗液检测传感器,,能监测佩戴者运动时身体的水合作用。
另外,三星近年来已经生产了不少石墨烯材质的导电设备,并且有望将电池的寿命提升一倍。
低功耗技术
目前可穿戴设备产品的续航时间参差不齐,从一天到半年都有,而这也是为什么英特尔未来将在可穿戴设备领域扮演非常重要的角色。
英特尔的Curie模块基于英特尔为可穿戴设备推出的首款专用系统芯片,它集成了低功耗蓝牙通信功能和运动传感器,可应用于纽扣大小的解决方案。无论是计算、运动传感、低功耗蓝牙和电池充电功能都包含在内,并且通过模块集成元件的整合让开发者得以开发电池续航时间更长的可穿戴设备,从戒指、箱包、手镯、吊坠、健身追踪器到纽扣,开发者都可以很容易地进行开发。
而在美国纽约时装周上,我们已经看到了采用Curie模块的冬季极限运动会专用服装亮相。
来源:wareable 编译:米可
全部0条评论
快来发表一下你的评论吧 !