英特尔AI策略全解析(1):延伸四大产品线

人工智能

636人已加入

描述

英特尔决心全力发展AI,明年现有的Xeon E5、Xeon Phi处理器平台都将推出新一代产品,并将以Xeon搭配新开发的「Lake Crest」芯片,专攻类神经网络的加速应用

【英特尔AI应用主打4种服务器处理器】若要在数据中心环境当中建构AI系统,英特尔预计将提供4种运算平台:Xeon、Xeon Phi、Xeon搭配FPGA(Arria 10)、Xeon搭配Nervana(Lake Crest),分别主打基本用途、高效能、低延迟与可程序化、类神经网络加速等不同需求。图片来源:iThome

这一年来,除了云端服务、大数据、行动应用持续走红以外,人工智能(AI)无疑是下一个即将起飞的热门IT技术,许多人已经开始积极投入机器学习、深度学习的开发与应用,绘图处理器大厂Nvidia今年的营收、获利、股价持续上涨,也与此有关,而同样是处理器大厂的英特尔,现在也对AI的发展寄予厚望,并正式宣布调整以AI为重的策略,全力发展软硬件技术,以支持相关的发展。

在11月18日举行的「Intel AI Day」活动当中,英特尔执行长Brian Krzanich提出了他们的愿景,并期盼能推动AI普及,将AI变得更平民化,进而引领AI运算时代的来临,使英特尔能够成为加速AI发展的催化剂。

而就更实际的产品而言,英特尔在服务器端处理器平台上,也针对AI有所布局。在2017年,现有的Xeon E5、Xeon Phi处理器平台都将推出新一代产品,同时,除了以Xeon搭配FPGA(Field Programmable Gate Array)芯片Altera Arria 10之外,英特尔也将以Xeon搭配新开发的「Lake Crest」芯片,专攻类神经网络的加速应用。

值得注意的是,Lake Crest的形式是一张基于硅芯片的独立加速卡,技术源自于英特尔今年8月并购的新创公司Nervana Systems,该产品将于2017年第一季问世。之后,英特尔还将推出Xeon结合这种新型态加速AI处理机制的芯片,研发代号称为「Knights Crest」,届时,采用这颗芯片的服务器直接具有系统开机的能力,无需搭配Xeon处理器。

英特尔AI服务器平台的发布时程

在2016这一年,英特尔已经推出了FPGA的系统单芯片解决方案Arria 10,以及Xeon Phi x200系列(Knights Landing)。2017年他们将发表新的Xeon Phi(Knights Mill),以及深度学习专用的运算芯片Lake Crest,而在通用服务器级处理器Xeon系列,基于Skylake微架构的产品也将问世。

强化平行处理与向量处理性能,Xeon与Xeon Phi支持新指令集

英特尔在2017年即将推出的服务器产品,还包括采用Skylake微架构的新一代Xeon处理器,以及Xeon Phi(代号为Knights Mill)。

以现行的Xeon E5-2600 v4系列处理器而言,根据英特尔提供的效能测试数据,若执行大数据与AI领域经常会运用的Apache Spark软件环境,效能提升的幅度,可望达到18倍之高(以今年推出的Xeon E5-2699 v4搭配MKL 2017 Update 1链接库,对上Xeon E5-2697 v2搭配F2jBLAS链接库)。

英特尔表示,在初期出货给特定云端服务业者的「Skylake」Xeon处理器版本(preliminary version)当中,将会加入更多整合式加速运算的进阶特色。例如,新的进阶向量延伸指令集AVX-512,可针对机器学习类型工作负载的执行,提升相关的推理论断能力。至于Xeon新平台其他增益的功能与组态支持,预计将会在2017年中正式发布时,才会揭露。

若单看AVX-512这套指令集,目前只有今年6月推出的Xeon Phi x200系列处理器(Knights Landing)支持,接下来,英特尔的主力通用服务器平台Xeon处理器,会在下一代采用Skylake微架构的产品当中支持。

因此,就目前而言,英特尔现有处理器所支持的AVX指令集,总共可分为三代:Sandy Bridge和Ivy Bridge微架构处理器,内建的是第一代AVX,Haswell和Broadwell微架构处理器改为AVX2,而Skylake微架构和Knights Landing是采用AVX512。基本上,前两代的AVX指令集,都是基于128位SIMD缓存器,可延伸到256位。

至于Xeon Phi的下一代产品 「Knights Mill」,英特尔表示,会把深度学习的应用效能,提升到现有Xeon Phi处理器(7290)的4倍,并同样具备直接内存访问(Direct Memory Access)的能力——最高可存取到400GB(Knights Landing是以384GB的DDR4内存,搭配16GB的MCDRAM)。

同时,在横向扩展到32节点的系统环境当中,目前的Xeon Phi也已经能大幅缩短机器学习的训练时间,成效差距可达到31倍之大。

基于FPGA可程序化硬件运算技术,推出深度学习加速卡DLIA

FPGA则是另一个英特尔近年来极力发展的重点,他们在2015年并购了专攻FPGA技术的Altera公司,并以此成立新的业务单位──可程序化解决方案事业群(Programmable Solutions Group)。

针对高效能运算(HPC)领域当中也相当热门的AI应用,英特尔在今年11月稍早举行的Supercomputing 2016大会期间,也宣布将于2017年初推出基于FPGA的AI加速解决方案,名为Deep Learning Inference Accelerator(DLIA),可用于影像辨识应用,并且具备大量的数据吞吐能力与高度的能源效益。

DLIA的硬件是英特尔FPGA 系列产品当中的Arria 10的适配卡,芯片之间传输率,最高可达到25.78 Gbps,最大浮点运算效能为1,500 GFLOPS,可因应卷积神经网络(CNN)的部署架构,提供优化效能。而且,Arria 10本身所采用的处理器,是20奈米制程的ARM系统单芯片(SoC)Cortex-A9 MPCore,比起前一代FPGA与SoC芯片,号称能节省4成的电力。

同时,由于DLIA是基于FPGA技术而成,所以秉持了可程序化的特性,用户能从远程对DLIA进行韧体更新,以便随时因应AI技术的改变,而且也能直接运用深度学习的软件开发框架,例如英特尔自己维护、发行的Caffe,以及MKL-DNN(Math Kernel Library for Deep Neural Networks)等链接库。

专为深度学习应用所设计的Crest系列芯片,预计将在2017年问世

英特尔2016年并购Nervana公司后,预计在2017年推出运算芯片Nervana Engine。

这颗代号为Lake Crest的处理器,是专为深度学习的工作负载所设计的,将提供极高的运算密度,大幅超越现行GPU的运算能力。

在数据存取的方式上,Lake Crest本身也配置了新一代的高速带宽内存技术HBM2,搭配的总容量为32GB,访问速度高达8Tb/s。而芯片之间进行互相沟通时,Lake Crest提供12个双向的链接通道,有助于在彼此互连的架构下,进行高速数据传输。

英特尔强调,Lake Crest能支持真正的数据模型平行处理作业,因为在这样的运算架构当中,每一个运算节点,都会配置专用的内存接口,如此一来,系统能够存取的数据模型大小较不受限,同时也可以藉此增进内存I/O效率。

而在Lake Crest之后,英特尔打算师法Xeon Phi x200系列处理器的作法,推出更进一步整合Xeon与Nervana加速技术的芯片,研发代号为Knights Crest。展望AI运算平台的未来目标,他们希望将现行AI应用耗费在深度学习训练的时间,尽可能地缩短,在2020年能做到实时训练,达到节省幅度100倍的目标。

Lake Crest的深度学习处理架构

Lake Crest是基于多维度数据数组(tensor-based)的处理架构,而且,提供Flexpoint的作法,所能支持的平行处理层级是现行技术的10倍。这颗芯片内建的内存也很特别,是HBM(High Bandwidth Memory)的第二代技术,内存带宽是目前DDR4的12倍。

下篇:英特尔AI策略全解析(2):软件的优化提供强大效能

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分