陀螺仪LSM6DSOW开发(9)----加速度校准

描述

概述

MotionAC 是 STMicroelectronics 提供的一款用于加速度计校准的中间件库。该库可以实时计算加速度计的偏移和比例因子,并对传感器数据进行补偿,从而提高测量精度。
MotionAC 库通过获取加速度计的数据,计算出偏移和比例因子校准参数,并应用这些参数对原始数据进行校正。校准可以在动态和静态两种模式下进行。

需要样片的可以加群申请:615061293 。

传感器

视频教学

[https://www.bilibili.com/video/BV1Yw4m1k7tR/]

样品申请

[https://www.wjx.top/vm/OhcKxJk.aspx#]

源码下载

[https://download.csdn.net/download/qq_24312945/89628523]

硬件准备

首先需要准备一个开发板,这里我准备的是自己绘制的开发板,需要的可以进行申请。 主控为STM32H503CB,陀螺仪为LSM6DSOW,磁力计为LIS2MDL。传感器

校准过程

2.2.6 节详细描述了如何使用 MotionAC 库进行加速度计的校准过程。该过程通过正常运动或特定姿态的设备来确定偏移和比例因子补偿,以提高加速度计的测量精度。
初始位置:
● 将设备稳固地握在起始位置(位置1)。
旋转设备:
● 轻轻地将设备沿 YZ 平面旋转 180°,使设备翻转到其背面(位置4)。
● 然后再沿 XZ 平面顺时针旋转 180°,使设备返回到起始位置(位置1)。
平滑路径:
● 试图沿平滑路径和恒定速度旋转设备。
六点校准:
● 也可以执行标准的六点校准,将模块静止在六个不同方向(+X, -X, +Y, -Y, +Z, -Z)上。

传感器

开启CRC

传感器

串口设置

设置串口速率为2000000。

传感器

开启X-CUBE-MEMS1

通过使用 MotionAC 库,可以有效地对加速度计进行校准,确保测量数据的准确性。

传感器

速率选择

MotionAC 支持从20 Hz到100 Hz的更新频率。

传感器

AccelerometerCalibration

该应用程序展示了如何使用由 STMicroelectronics 开发的 MotionAC 中间件库与 X-NUCLEO-IKS01A3 扩展板和 STM32 Nucleo 板上的 LSM6DSO 组件进行加速度计校准。应用程序启动后,用户可以使用由 STMicroelectronics 开发的 Unicleo-GUI 应用程序查看数据。

传感器

变量定义

float acceleration_mg[3];
static MAC_knobs_t Knobs;

MotionAC文件

主要包含app_mems_motionac.c和app_mems_motionac.h,这两个文件是用于配置和实现加速度计校准功能的头文件和源文件。它们使用了 MotionAC 库,提供了必要的函数接口和实现来初始化、更新、获取校准参数和应用校准补偿。

MX_AccelerometerCalibration_Init

MX_AccelerometerCalibration_Init 该函数初始化了加速度计校准功能。以下是其具体流程和每个步骤的详细解释:

  1. 调用 MotionAC_manager_init(MAC_DISABLE_LIB) 禁用 MotionAC 库。
  2. 调用 MotionAC_manager_init(MAC_ENABLE_LIB) 启用 MotionAC 库。
    1和2主要使用MotionAC_Initialize 函数用于初始化 MotionAC 引擎,根据传入的参数决定启用或禁用加速度计校准库。此函数是 MotionAC 库的核心初始化函数,通过设置内部状态和参数来准备校准功能。

传感器

  1. 调用 MotionAC_GetKnobs(&Knobs) 获取当前的校准设置。
  2. 调用 MotionAC_SetKnobs(&Knobs) 将这些新的设置应用到库中。
  3. 调用 MotionAC_manager_get_version(LibVersion, &LibVersionLen) 获取 MotionAC 库的版本信息。

AC_Data_Handler

AC_Data_Handler 函数的主要功能是处理加速度计数据,通过 MotionAC 库进行校准,获取并应用校准参数,最终输出校准后的加速度数据和校准质量信息。

  1. MotionAC_manager_update 函数用于更新加速度计数据,并运行加速度计的校准算法。这一过程包括接收新的加速度计数据,执行校准计算,确定是否需要更新校准参数,并返回校准状态。
    1中主要执行MotionAC_Update 函数用于运行加速度计校准算法。它接收输入的加速度计数据和时间戳,计算校准参数,并返回当前样本是否完成校准。

传感器

MotionAC_manager_get_params 函数用于获取加速度计的校准参数,包括偏移值(Offset)和比例因子(Scale Factor)矩阵。这些参数是由校准算法计算得到的,用于对原始加速度计数据进行校正。
2.中主要执行MotionAC_GetCalParams 函数用于检索加速度计的校准系数,包括偏移和比例因子补偿参数,以及校准质量因子。该函数将这些参数填充到传入的输出结构体中,以便调用者使用这些参数进行校准数据处理。
● MAC_CALQSTATUSUNKNOWN = 0:校准参数的准确性未知。
● MAC_CALQSTATUSPOOR = 1:校准参数的准确性较差,不可信。
● MAC_CALQSTATUSOK = 2:校准参数的准确性尚可。
● MAC_CALQSTATUSGOOD = 3:校准参数的准确性良好。

传感器

  1. MotionAC_manager_compensate 函数用于对原始加速度计数据进行补偿,即应用先前计算得到的校准参数(偏移值和比例因子矩阵)来校正加速度计数据。这个过程是为了消除加速度计在测量中的系统误差,提高数据的准确性。

初始化定义

/* USER CODE BEGIN 2 */
    printf("HELLO!n");
  HAL_GPIO_WritePin(CS1_GPIO_Port, CS1_Pin, GPIO_PIN_SET);
  HAL_GPIO_WritePin(SA0_GPIO_Port, SA0_Pin, GPIO_PIN_RESET);
  HAL_GPIO_WritePin(CS2_GPIO_Port, CS2_Pin, GPIO_PIN_SET);
    HAL_Delay(100);    



  stmdev_ctx_t dev_ctx;
  /* Initialize mems driver interface */
  dev_ctx.write_reg = platform_write;
  dev_ctx.read_reg = platform_read;
  dev_ctx.mdelay = platform_delay;
  dev_ctx.handle = &SENSOR_BUS;
  /* Init test platform */
//  platform_init();
  /* Wait sensor boot time */
  platform_delay(BOOT_TIME);
  /* Check device ID */
  lsm6dso_device_id_get(&dev_ctx, &whoamI);
    printf("LSM6DSO_ID=0x%x,whoamI=0x%x",LSM6DSO_ID,whoamI);
  if (whoamI != LSM6DSO_ID)
    while (1);

  /* Restore default configuration */
  lsm6dso_reset_set(&dev_ctx, PROPERTY_ENABLE);

  do {
    lsm6dso_reset_get(&dev_ctx, &rst);
  } while (rst);

  /* Disable I3C interface */
  lsm6dso_i3c_disable_set(&dev_ctx, LSM6DSO_I3C_DISABLE);
  /* Enable Block Data Update */
  lsm6dso_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);
  /* Set Output Data Rate */
  lsm6dso_xl_data_rate_set(&dev_ctx, LSM6DSO_XL_ODR_52Hz);
  lsm6dso_gy_data_rate_set(&dev_ctx, LSM6DSO_GY_ODR_52Hz);
  /* Set full scale */
  lsm6dso_xl_full_scale_set(&dev_ctx, LSM6DSO_2g);
  lsm6dso_gy_full_scale_set(&dev_ctx, LSM6DSO_2000dps);
  /* Configure filtering chain(No aux interface)
   * Accelerometer - LPF1 + LPF2 path
   */
  lsm6dso_xl_hp_path_on_out_set(&dev_ctx, LSM6DSO_LP_ODR_DIV_100);
  lsm6dso_xl_filter_lp2_set(&dev_ctx, PROPERTY_ENABLE);

  /* Initialize the peripherals and the MEMS components */    
    MX_AccelerometerCalibration_Init();
  /* USER CODE END 2 */

六位置法的标定方案

本文在校准三轴加速度计时使用六位置校准法,该方法使用地球的重力力加速度在静态下校准三轴加速度传感器,具体的校准过程如下图所示。具体校准过程如下:

  1. 将传感器的Y轴垂直水平面向下;
  2. 以X轴为基准轴,绕其逆旋转90°,使乙轴垂直水平面向上
  3. 以Y轴为基准轴,绕其逆旋转90°,使X轴垂直水平面向下
  4. 以Y轴为基准轴,绕其逆时针旋转90°使2轴垂直水平面向下
  5. 绕Y轴逆时针旋转909、使X轴垂直水平面向上
  6. 绕Z轴顺时针旋转90°、使Y轴垂直水平面向上

传感器

在没有精密设备的情况下。这种方法基本上是在试图找到每个轴的偏移(zero-g offset)和灵敏度(scale factor)。这种方法通常称为静态校准方法,因为它不需要动态输入,只需将设备置于静态的已知方向即可。

主函数

/* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    uint8_t reg;
    /* Read output only if new xl value is available */
    lsm6dso_xl_flag_data_ready_get(&dev_ctx, ®);

    if (reg) {
      /* Read acceleration field data */
      memset(data_raw_acceleration, 0x00, 3 * sizeof(int16_t));
      lsm6dso_acceleration_raw_get(&dev_ctx, data_raw_acceleration);
      acceleration_mg[0] =
        lsm6dso_from_fs2_to_mg(data_raw_acceleration[0]);
      acceleration_mg[1] =
        lsm6dso_from_fs2_to_mg(data_raw_acceleration[1]);
      acceleration_mg[2] =
        lsm6dso_from_fs2_to_mg(data_raw_acceleration[2]);




      printf("Acceleration [mg]:%4.2ft%4.2ft%4.2frn",
              acceleration_mg[0], acceleration_mg[1], acceleration_mg[2]);
AC_Data_Handler();
    }

//    lsm6dso_gy_flag_data_ready_get(&dev_ctx, ®);

//    if (reg) {
//      /* Read angular rate field data */
//      memset(data_raw_angular_rate, 0x00, 3 * sizeof(int16_t));
//      lsm6dso_angular_rate_raw_get(&dev_ctx, data_raw_angular_rate);
//      angular_rate_mdps[0] =
//        lsm6dso_from_fs2000_to_mdps(data_raw_angular_rate[0]);
//      angular_rate_mdps[1] =
//        lsm6dso_from_fs2000_to_mdps(data_raw_angular_rate[1]);
//      angular_rate_mdps[2] =
//        lsm6dso_from_fs2000_to_mdps(data_raw_angular_rate[2]);
//      printf("Angular rate [mdps]:%4.2ft%4.2ft%4.2frn",
//              angular_rate_mdps[0], angular_rate_mdps[1], angular_rate_mdps[2]);


//    }

//    lsm6dso_temp_flag_data_ready_get(&dev_ctx, ®);

//    if (reg) {
//      /* Read temperature data */
//      memset(&data_raw_temperature, 0x00, sizeof(int16_t));
//      lsm6dso_temperature_raw_get(&dev_ctx, &data_raw_temperature);
//      temperature_degC =
//        lsm6dso_from_lsb_to_celsius(data_raw_temperature);
//      printf( "Temperature [degC]:%6.2frn", temperature_degC);

//    }    

HAL_Delay(1);


    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */

演示

在未执行六位置校准法时,Calibration不为3。

传感器

X轴向下。

传感器

X轴向上。

传感器

Y轴向下。

传感器

Y轴向上。

传感器

Z轴向下。

传感器

Z轴向上。

传感器

校准完毕Calibration=3

传感器

审核编辑 黄宇

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分