电容中的穿心电容是什么意思?电容的充放电电路图及其原理

电容器

227人已加入

描述

  穿心电容是什么?

  穿心电容外形如下图所示。穿心电容是一种三端电容,但与普通的三端电容相比,由于它直接安装在金属面板上, 因此它的接地电感更小,几乎没有引线电感的影响,另外,它的输入输出端被金属板隔离,消除了高频耦合,这两个特点决定了穿心电容具有接近理想电容的滤波效果。 穿心电容的介质为陶瓷介质,而陶瓷电容的容量会随环境温度变化而变化,这种容量变化会影响滤波器的滤波截止率。陶瓷电容的容量温度变化率是由陶瓷介质本身决定的。因此,选择适当的陶瓷介质非常重要。滤波器所用的电容一般为陶瓷电容。由于其物理结构,这种陶瓷电容又称为穿心电容。

  穿心电容自电感较普通电容小得多,故而自谐振频率很高。同时,穿心式设计,也有效地防止了高频信号从输入端直接耦合到输出端。这种低通高阻的组合,在 1GHz 频率范围内,提供了极好的抑制效果。

  电容充放电电路的设计:

  图(a)所示电路中,VF1是一次侧主MOSFET,来自PWM集成控制器的脉冲使其通/断工作。为使VF2的通/断时间与VF1相反,增设双向延时电路S1。现假设VF1为截止状态,VF2为导通状态,吸收电容Cr充电到VF1的漏极-源极间电压,由此,也吸收加在VF1上的浪涌电压。在由延时电路确定的延时时间后VF2截止,但这时,Cr两端电压等于加在VF1上的电压,因此,为零电压和零电流开关器件断开方式。

  VF1截止后,二次侧二极管VD2的电流降为零,变压器无励磁能量。此时一次主绕组N1感应的回扫电压变为零,以高于C1上电压进行充电的吸收电容C1对一次主绕组N1反向放电,这样,放电电流经VF2的寄生二极管(虚线所示)流通。Cr放电开始时,VF2必须截止。由于Cr放电,电容Cr与一次主绕组的电感Lp产生谐振。

电感

  (a)原理电路;(b)实用电路

  图 控制吸收电容充放电的电路图

  若VF2为导通状态,谐振继续衰减振荡,但VF2截止状态时,电容Cr两端电压为零时振荡停止。若Cr停止谐振,则以VF1和VF2的输入较小容量电容继续产生较短周期的谐振。VF1再度导通时,轫小电容放电电流流经VF1本身而消耗掉。VF1导通时,其小容量电容充电的电压随导通时间而改变,但Cr两端电压降到最低电压,因此,可以减小Cr产生的损耗。也就是说,即使采用较大容量的电容Cr损耗也不会增大。

  图(a)所示为采用VF2寄生二极管使Cr放电形式的电路。一般的M0S-FET寄生二极管恢复特性不适宜高频,因此,增设低耗二极管作为电容放电二极管,即图(b)中的二极管VD1。为使放电电流全部流经二极管VD1,在VF2回路中增加了逆阻断二极管VD2.逆阻断二极管VD2的耐压大于VD1的正向压降即可,因此,选用肖特基二极管(SBD)。另外,双向延时元件宜采用可饱和电抗器,延时元件和YF2的输入电容共同决定延时时间,需要较长延时时间时,可在栅极增接电容。输出电流一减小,VF1的导通时间就变短。这导通时间若短于延时时间,则VF1截止后,VF2导通,因此,VF1漏极-源极间电压UDS的波形偏离正常波形,功耗也稍增大。为降低最小输出电流,延时时间要非常短,这样,就不能充分有效利用电容Cr。这里,作为大致目标,最小输出电流设定为最大输出电流的2%~3%。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分