OLED的制造与其分类,OLED的产品特性特点

oled

22人已加入

描述

  有机发光二极管(organic light-emitting diode,OLED)是一种由柯达公司开发并拥有专利的显示技术,这项技术使用有机聚合材料作为发光二极管中的半导体(semiconductor)材料。聚合材料可以是天然的,也可能是人工合成的,可能尺寸很大,也可能尺寸很小。蛋白质和DNA就是有机聚合物的例子。

  OLED显示技术广泛的运用于手机、数码摄像机、DVD机、个人数字助理(PDA)、笔记本电脑、汽车音响和电视。OLED显示器很薄很轻,因为它不使用背光。OLED显示器还有一个最大为160度的宽屏视角,其工作电压为二到十伏特(volt,用V来表示)。基于OLED的新技术有软性有机发光显示技术(FOLED),这项技术有可能在将来使得高度可携带、折叠的显示技术变为可能。

  oled的生产制造

  OLED生产过程中最重要的一环是将有机层敷涂到基层上。完成这一工作,有三种方法:

  1、真空沉积或真空热蒸发(VTE)

  位于真空腔体内的有机物分子会被轻微加热(蒸发),然后这些分子以薄膜的形式凝聚在温度较低的基层上。这一方法成本很高,但效率较低。

  2、有机气相沉积(OVPD)

  在一个低压热壁反应腔内,载气将蒸发的有机物分子运送到低温基层上,然后有机物分子会凝聚成薄膜状。使用载气能提高效率,并降低OLED的造价。

  3、喷墨打印

  利用喷墨技术可将OLED喷洒到基层上,就像打印时墨水被喷洒到纸张上那样。喷墨技术大大降低了OLED的生产成本,还能将OLED打印到表面积非常大的薄膜上,用以生产大型显示器,例如80英寸大屏幕电视或电子看板。

  

  OLED的分类

  根据使用有机功能材料的不同,OLED器件可以分为两大类:小分子器件和高分子器件。小分子OLED技术发展得较早(1987年),而且技术已经达到商业化生产水平。高分子OLED又被称为PLED (PolymerLED),其发展始于1990 年,由于聚合物可以采用旋涂、喷墨印刷等方法制备薄膜,从而有可能大大降低器件生产成本,但目前该技术远未成熟。

  根据驱动方式的不同,OLED 器件也可以分为无源驱动型(Passive Matrix,PM,亦称被动 驱动)和有源驱动型(Active Matrix,AM,亦称主动驱动)两种。无源驱动型不采用薄膜晶体 管(TFT,Thin Film Transistor)基板,一般适用于中小尺寸显示;有源驱动型则采用TFT基板,适用于中大尺寸显示,特别是大尺寸全彩色动态图像显示。目前,无源驱动型OLED技术已经比较成熟,商业化的产品绝大部分是无源驱动型;有源驱动型OLED技术发展很快,但还需要一定时间才能大批量推出商用产品。

  以下是几种OLED:被动矩阵OLED、 主动矩阵OLED、透明OLED、顶部发光OLED、可折叠OLED、白光OLED等。

  每一种OLED都有其独特的用途。接下来,我们会逐一讨论这几种OLED。首先是被动矩阵和主动矩阵OLED。

  被动矩阵OLED(PMOLED)

  

  被动矩阵OLED结构

  PMOLED具有阴极带、有机层以及阳极带。阳极带与阴极带相互垂直。阴极与阳极的交叉点形成像素,也就是发光的部位。外部电路向选取的阴极带与阳极带施加电流,从而决定哪些像素发光,哪些不发光。此外,每个像素的亮度与施加电流的大小成正比。

  PMOLED易于制造,但其耗电量大于其他类型的OLED,这主要是因为它需要外部电路的缘故。

  PMOLED用来显示文本和图标时效率最高,适于制作小屏幕(对角线2-3英寸),例如人们在移动电话、掌上型电脑

  以及MP3播放器上经常能见到的那种。即便存在一个外部电路,被动矩阵OLED的耗电量还是要小于这些设备当前采用的LCD。

  主动矩阵OLED(AMOLED)

  

  主动矩阵OLED结构

  AMOLED具有完整的阴极层、有机分子层以及阳极层,但阳极层覆盖着一个薄膜晶体管(TFT)阵列,形成一个矩阵。TFT阵列本身就是一个电路,能决定哪些像素发光,进而决定图像的构成。

  AMOLED的耗电量低于PMOLED,这是因为TFT阵列所需电量要少于外部电路,因而AMOLED适合用于大型显示屏。AMOLED还具有更高的刷新率,适于显示视频。AMOLED的最佳用途是电脑显示器、大屏幕电视以及电子告示牌或看板。

  透明OLED

  

  透明OLED结构

  透明OLED只具有透明的组件(基层、阳极、阴极),并且在不发光时的透明度最高可达基层透明度的85%。当透明OLED显示器通电时,光线可以双向通过。透明OLED显示器既可采用被动矩阵,也可采用主动矩阵。这项技术可以用来制作多在飞机上使用的平视显示器。

  顶部发光OLED

  顶部发光OLED具有不透明或反射性的基层。它们最适于采用主动矩阵设计。生产商可以利用顶部发光OLED显示器制作智能卡。

  顶部发光OLED结构

  

  可折叠OLED

  可折叠OLED的基层由柔韧性很好的金属箔或塑料制成。可折叠OLED重量很轻,非常耐用。它们可用于诸如移动电话和掌上型电脑等设备,能够有效降低设备破损率,而设备破损是退货和维修的一大诱因。将来,可折叠OLED有可能会被缝合到纤维中,制成一种很“智能”的衣服,举例来说,未来的野外生存服可将电脑芯片、移动电话、GPS接收器和OLED显示器通通集成起来,缝合在衣物里面。

  白光OLED

  白光OLED所发白光的亮度、均衡度和能效都要高于日光灯发出的白光。白光OLED同时具备白炽灯照明的真彩特性。我们可以将OLED制成大面积薄片状,因此OLED可以取代目前家庭和建筑物使用的日光灯。将来,使用OLED有望降低照明所需的能耗。

  OLED显示技术的分类之大分子、小分子

  目前,OLED器件的实用化制造技术存在两种不同的工艺:一种是采用高分子有机聚合物,另一种是采用低分子有机聚合物。

  高分子聚合物,也称为高分子发光二极管(PLED),由英国剑桥大学的杰里米伯勒德及其同事首先发现。PLED为polymer light-emitting diode的缩写,即第二种有机发光材料为高分子聚合物。聚合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子有机发光二极管。

  1990年,英国剑桥大学的Friend研究小组首先利用聚对苯乙炔(PPV)制作PLED器件,14 V电压下发出黄绿色光,开创了聚合物电致发光材料研究的新时代。PPV类聚合物作为电致发光材料最早被提出,而经过修饰和改性的PPV衍生物,因其综合性能优秀,也是目前研究得最多的一类导电高分子发光材料。

  小分子OLED(OLED)                             大分子OLED(PLED)

  OLED显示技术

  高质量聚合物薄膜的制备是PLED器件制作的关键。相对于小分子材料,高分子可以通过结构调整制得可溶的材料,成膜的手段较多,如旋涂、印刷、打印等技术,可以使用造价较低的印刷型设备,因此相对于小分子LED,PLED具有低成本的优势。可以设想,随着高性能聚合物材料的不断研发和薄膜制备技术的进一步完善,PLED的产业化将会加速发展,并呈现更好的比较优势。

  剑桥大学的科学家首先发现导电高分子材料PPV具有良好的电致发旋光性能,并制成PLED器件,就深刻认识到PLED的发展潜力,并于于1992年成立CDT(Cambridge Display Technology)公司。导电高分子的奠基人之一的Heeger教授(2000年度诺贝尔化学奖得主)于1990年创立Uniax公司。1992年该公司的曹镛等以聚对苯二甲酸乙二醇酯(PET)为柔性透明衬底材料,通过溶液旋涂把聚苯胺(PANI)或聚苯胺类的混合物的导电材料在上面形成导电膜,制得了柔性PLED,将有机电致发光显示器最为迷人的一面展现在世人的面前。两家公司为最主要的OLED高分子技术的专利持有者。

  低分子聚合物OLED(或称为SMOLED),是一种小分子OLED技术。主要器件可以使用真空蒸镀技术制造。小的有机分子被装在ITO玻璃衬底上的若干层内。与基于PLED技术的器件相比,SMOLED不仅制造工艺成本更低,可以提供全部262 000种颜色的显示能力,而且有很长的工作寿命。

  

  有机小分子材料以金属鳌合物和稀土配合物为代表。1987年Tang C W首先采用此种化合物Alq3实现较高效率的有机电致发光器件。常见的此类物质有:Alq3, Al mqs , Zn( 5 Fa) 2, Be Bq2等。此类发光物质的缺点是制作过程中难分离。其它性能比较优越的发光薄膜材料有Perylene , Aromaticdiamine , TAD, TAP,T AZ,TPA, TPB, TPD, TPP等。

  目前小分子技术的核心专利被其主要发现者柯达公司掌握。伊斯曼柯达公司的专利许可对象开始以日本厂商为主,之后伊斯曼柯达公司逐步将其许可范围转向中国***省和香港的厂商,包括***的铼宝、东元激光、光磊、联宗光电以及香港的Truly International与精电国际等。这些得到Eastern Kodak公司OLED专利许可的亚洲厂商大多具有LCD产业背景,如三洋、三星等,因而在产品开发和市场渠道方面具有相当的优势。Eastern Kodak公司选择这些厂商作为专利许可对象,很好地促进了小分子OLED技术的商品化。

  目前小分子OLED比高分子OLED的技术和工艺都更加成熟,并已进入市场化阶段。因而市场上的OLED绝大多数是小分子、中小尺寸的产品,主要用于MP3、手机、车载设备、仪器仪表上。

  OLED的特性特点

  OLED显示技术具有自发光的特性,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光,而且OLED显示屏幕可视角度大,并且能够节省电能,从2003年开始这种显示设备在MP3播放器上得到了应用。

  以OLED使用的有机发光材料来看,一是以染料及颜料为材料的小分子器件系统,另一则以共轭性高分子为材料的高分子器件系统。同时由于有机电致发光器件具有发光二极管整流与发光的特性,因此小分子有机电致发光器件亦被称为OLED(Organic Light Emitting Diode),高分子有机电致发光器件则被称为PLED (Polymer Light-emitting Diode)。

  小分子及高分子OLED在材料特性上可说是各有千秋,但以现有技术发展来看,如作为监视器的信赖性上,及电气特性、生产安定性上来看,小分子OLED处于领先地位。当前投入量产的OLED组件,全是使用小分子有机发光材料。

  有机发光显示器件之所以受到人们的青睐,是因为其与LCD 为代表的第二代显示器相比,有着突出的技术优点:

  ●具有低成本特性,工艺简单,使用原材料少;

  ●具有自发光特性,不需要背光源;

  ●具有低压驱动和低功耗特性,直流驱动电压在10 伏以下,易于用在便携式移动显示终端上;

  ●具有全固态特性,无真空腔,无液态成份,机械性能好,抗震动性强,可实现软屏显示;

  ●具有快速响应特性,响应时间为微秒级,比普通液晶显示器响应时间快1000 倍,适于播放动态图像;具有宽视角特性,上下、左右的视角接近180 度;

  ●具有高效发光特性,可作为新型环保光源;

  ●具有宽温度范围特性,在零下40 摄氏度至零上85 摄氏度范围内都可正常工作;

  ●具有高亮度特性,显示效果鲜艳、细腻。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分