标定的概念
标定是一种校准过程,它通过与已知的标准或参考值进行比较来确保测量设备、仪器或系统的准确性和可靠性。这个过程涉及调整设备,以消除系统误差和提高测量结果与真实值的一致性,从而确保数据的精确度和可重复性。
1.为什么去标定
我们使用单片机ADC读取的电压电流值由于制造公差、温度变化、时间老化、电源波动等因素引起的初始误差和漂移,我们需要对电压电流进行标定校准,使得我们得到的电压电流值是正确的。
2.标定的方法
标定的方法多种多样,我们需要根据自己的需求来选择相应的方法,常见的标定方法如下所示:
(1)直接比较法:
将待标定的测量设备与一个已知准确度的标准设备进行比较,直接读取并记录差异。
(2)多点标定法:在多个已知的标准点上进行测量,收集数据点,然后通过数学模型(如多项式拟合)来确定设备输出与标准值之间的关系。(3)线性回归法:使用最小二乘法等统计技术,通过拟合最佳拟合线来确定设备输出与标准输入值之间的线性关系。(4)分段线性标定:当测量设备的响应在不同输入范围内呈现不同的线性度时,可以采用分段线性标定,即在不同的输入范围内使用不同的线性模型。
(5)非线性标定:
对于非线性设备,使用非线性函数(如指数、对数或S形曲线)来描述输入与输出之间的关系。
标定的实现
1.CW32开发板的实物图和原理图
2.软件代码讲解
(1)滤波算法在做电压值的校准之前,我们根据传感器采集到的是连续性的时间序列信号,所以我们可以采用了均值滤波对单片机采集到的AD值进行滤波处理。在程序中我首先初始化总和、最大值和最小值变量,然后在一个循环中累加数组 value 中所有元素的值,并同时更新最大值和最小值。循环结束后,从总和中减去最大值和最小值,以排除可能的异常数据点,最后将调整后的总和除以数组元素数减去2,得到并返回一个滤除极端值后的均值。这种方法有助于减少数据中的噪声,特别是当数据集中包含异常高值或低值时。代码如下所示:
uint32_t Mean_Value_Filter(uint16_t *value, uint32_t size) //均值滤波 { uint32_t sum = 0; //ADC采样数据和 uint16_t max = 0; uint16_t min = 0xffff; //min初值取最大是为了将第一个数据记录 int i; for(i = 0; i < size; i++) { sum += value[i]; if(value[i] > max) { max = value[i]; } if(value[i] < min) { min = value[i]; } } sum -= max + min; //去除最大最小值 sum = sum / (size - 2); return sum; }
(2)分段线性标定
在代码中定义了电压校准的相关变量X06和X12,分别代表着6V对应的AD代码值和12V对应的AD代码值。其中还定义了纵坐标的变量Y06和Y12,这个对应着电压值6V和12V。最后定义了坐标轴的斜率K,如下所示:
//5V与15V 校准 unsigned int X06=0; unsigned int X12=0; unsigned int Y06=6; unsigned int Y12=12; float K; //斜率
在标定校准之前,我们需要计算斜率,根据两点确定一条直线算出该区间内的斜率K,如下图所示:
void Count_K(void) { K = (Y12 - Y06); K = K/(X12 - X06); }
我们还需要存储校准值,我们在一个数组中存了三个数据,第一个数据是判断位(0xaa),判断当前是否存储过校准值。其中两个是6V对应的AD代码值和12V对应的AD代码值。存储之前需要擦除然后才能写入数据。代码如下所示:
void flash_calibration(void) { uint16_t dat[5]; dat[0]=0xaa; dat[1]=X06; dat[2]=X12; flash_erase(); flash_write(0,dat,5); }
我们除了写入校准值还要读取校准值,先读取校准值,判断第一个数据是否为0xaa,如果不是0xaa,代表没校准过,需要赋一个初始化进行存储。例如
X06 = 6.0/23/1.5*4096;如果第一个值是0xaa,那就可以把存储过的值赋给我们的变量就可以了,代码如下所示。
void judge_calibration(void) { uint16_t dat[5]; flash_read(0,dat, 5); if(dat[0]!=0xaa) { X06 = 6.0/23/1.5*4096; X12 = 12.0/23/1.5*4096; flash_calibration(); } else { X06=dat[1]; X12=dat[2]; } }
我们可以通过按键对每一个区间的信号进行校准,比如说我们这次校准的是6~12V区间内的信号,初始化时可以通过按下一次按键对6V时候的数据校准,再按一次按键就可以对12V时候的数据校准,代码如下所示:
void button_select_calibration(void) { if(GPIO_ReadPin(CW_GPIOB,GPIO_PIN_12) == GPIO_Pin_RESET)//按键按下 { mode++; if(mode >2) mode =0; while(GPIO_ReadPin(CW_GPIOB,GPIO_PIN_12) == GPIO_Pin_RESET); } if(mode == 0) { DisPlay_dianya(V_Buffer); } else if(mode == 1) { X06=Mean_Value_Filter(Volt_Buffer,ADC_SAMPLE_SIZE); flash_calibration(); Count_K(); Volt_Cal(); DisPlay_dianya(V_Buffer); } else if(mode == 2) { X12=Mean_Value_Filter(Volt_Buffer,ADC_SAMPLE_SIZE); flash_calibration(); Count_K(); Volt_Cal(); DisPlay_dianya(V_Buffer); } }
3.分段线性标定分析和处理
在这个程序中,我们的思想是同时两路AD采集,一个是测量电压的,一个是测量电流的,同时读取AD数据,进而能对二者一起校准。代码如下所示:
void Get_ADC_Value(void) { static uint8_t cnt; ADC_GetSqr0Result(&Volt_Buffer[cnt]); ADC_GetSqr3Result(&Curr_Buffer[cnt]); cnt++; if(cnt >= ADC_SAMPLE_SIZE) { cnt = 0; } }
我们在电压电流表上测量了大量的数据,如下图所示:
在上面图中可以看出实际的电压值和测量的电压值存在一定的偏差,我们将它们的偏差值做成一个折线图给大家看看,如下图所示。
常见标定的原理是:使用AD值作为X轴,电压(电流)值作为Y轴;在电压(电流)为0的时候标定为Xmin,在电压(电流)为最大量程的时候标定为Xmax,根据数学公式两点确定一条直线,可以得到这条直线的斜率K。根据Y=kx公式我们可以通过输出每一个AD值得到对应的电压(电流)值。
常见的标定是在只有最小值和最大值之间做了标定,如果这两个值的范围很大,使用中间的AD值也会出现误差,所以我们就需要多做几组标定,使得数据更加准确,这样就形成了分段线性标定。效果图如下所示。
如果我们求X3到X2之间的电压值,可以根据公式:Y=k×(Xad-X2)+5得到准确的电压值,在这条折线上标的点越多,测量得到的电压值就越准确。
4.标定的结果
标定之前的实验数据显示,误差在0.08V左右,数据如下所示:
误差的折线图如下所示:
实物的测量图显示误差在0.08左右,结果如下所示:
在6V标定之后实验数据显示误差在0.01V左右,数据如下所示:
标定校准后的误差的折线图如下所示,可以看出6V标定后的误差范围在0V到0.03V之间的,所以证明了多处标定,得到的测量值就越精确。
经过标定校准后的电压显示没有误差,结果如下所示:
审核编辑 黄宇
全部0条评论
快来发表一下你的评论吧 !