电子常识
成像的原理很简单,大家初中物理课上都学过,我们在此就不详述了,但是我们在日常生活中的确是可以看到很多这方面的应用。
声成像的研究开始于20世纪20年代末期。最早使用的方法是液面形变法。随后,很多种声成像方法相继出现,至70年代已形成一些较为成熟的方法,并有了大量的商品化产品。声成像技术已得到广泛应用,主要用于地质勘探、海洋探测、工业材料非破坏探伤和医学诊断等方面。
声成像是基于传声器阵列测量技术,通过测量一定空间内的声波到达各传声器的信号相位差异,依据相控阵原理确定声源的位置,测量声源的幅值,并以图像的方式显示声源在空间的分布,即取得空间声场分布云图-声像图,其中以图像的颜色和亮度代表声音的强弱。声成像方法可分为常规声成像、扫描声成像和声全息。
a、常规声成像。从光学透镜成像方法引伸而来。用声源均匀照射物体,物体的散射声信号或透射声信号,经声透镜聚焦在像平面上形成物体的声像,它实质上是与物体声学特性相应的声强分布。用适当的暂时性或永久性记录介质,将此声强分布转换成光学分布,或先转换成电信号分布,再转换为荧光屏上的亮度分布。如此即可获得人眼能观察到的可见图像。
b、扫描声成像。通过扫描,用声波从不同位置照射物体,随后接收含有物体信息的声信号。经过相应的处理,获得物体声像,并在荧光屏上显示成可见图像。
c、声全息。将全息原理引进声学领域后产生的一种新的成像技术和数据处理手段。
声学照相机,又名声相(像)仪,是利用传声器阵列测量一定范围内的声场分布的专用设备,可用于测量物体发出的声音的位置和声音辐射的状态,并用云图方式显示出直观的图像,即声成像测量。目前国内比较先进的声相仪,是由中国科学院声学研究所噪声振动实验室自行研制的声相仪系统,具有世界先进水平。
随着临床需求与计算机技术的发展,超声影像技术经过了应用初期的一维超声成像(A型和M型)、灰阶二维超声成像(复合成像和实时成像)和三维超声(静态、动态和实时成像)等多个发展阶段,目前已经非常成熟,在临床诊断上发挥出巨大的作用。
当然可靠的数据提取是得到精确三维超声图像的前提,这就需要对光声信号能够高效采集。
三维超声成像分为静态三维成像和动态三维成像,动态三维成像由于参考时间因素(心动周期),用整体显像法重建感兴趣区域准实时活动的三维图像,则又称之为四维超声心动图。静态与动态三维超声成像重建的原理基本相同。
1、 立体几何构成法;该法将人体脏器假设为多个不同形态的几何体组合,需要大量的几何原型,因而对于描述人体复杂结构的三维形态并不完全适合,现已很少应用。
2、 表面轮廓提取法;是将三维超声空间中一系列坐标点相互连接,形成若干简单直线来描述脏器的轮廓的方法,曾用于心脏表面的三维重建。该技术所需计算机内存少,运动速度较快。缺点是:(1)需人工对脏器的组织结构勾边,既费时又受操作者主观因素的影响;(2)只能重建比较大的心脏结构(如左、右心腔),不能对心瓣膜和腱索等细小结构进行三维重建;(3)不具灰阶特征,难以显示解剖细节,故未被临床采用。
3 、体元模型法(votelmode);是目前最为理想的动态三维超声成像技术,可对结构的所有组织信息进行重建。在体元模型法中,三维物体被划分成依次排列的小立方体,一个小立方体就是一个体元。任一体元(v)可用中心坐标(x,y,z)确定,这里x,y,z分别被假定为区间中的整数。二维图像中最小单元为像素,三维图像中则为体素或体元,体元素可以认为是像素在三维空间的延伸。与平面概念不同,体元素空间模型表示的是容积概念,与每个体元相对应的数V(v)叫做“体元值”或“体元容积”,一定数目的体元按相应的空间位置排列即可构成三维立体图像。描述一个复杂的人体结构所需体元数目很大,而体元数目的多少(即体元素空间分辨率)决定模型的复杂程度。
三维超声成像技术采用二维面阵超声探头,使超声束在三维扫查空间中进行摆动,即可直接得到三维体数据。但二维面阵换能器的制作工艺限制了阵元数,使得三维图像的分辨率受到了一定的限制。目前已有使用二维阵列的超声成像系统面世。目前三维超声数据的提取仍广泛采用一维阵列探头。用一维阵列探头提取三维超声数据,需要外加定位装置,如目前临床广泛采用的一体化探头。该探头是将一个一维超声探头和摆动机构封装在一起,操作者只要将该探头放在被探查部位,系统就能自动采集三维数据。还有一种新型探头专门用于解决定位问题。该探头有三个阵列,中间的主阵列用于超声成像,与主阵列垂直的两个侧阵列用于提取定位图像。由于探头移动的连续性,所以定位图像两两重叠部分很大,可以通过两侧的定位图像确定两次采样间的位移、旋转,从而确定图像的空间位置。
1 、胃、肠道疾病。嘱受检者适量饮水或灌肠后可建立良好的透声窗。清楚显示胃肠道隆起性病变与溃疡的大小、深度、边缘形态,观察恶性肿瘤的浸润深度、范围及与邻近组织、血管的立体位置关系,进行术前TNM分期,对协助临床制定相应的治疗方案,具有重要意义。3D-CDE(彩色多普勒能量图CDE)对溃疡出血和胃底静脉曲张的诊断,也可提供较大的帮助。
2 、膀胱疾病。膀胱充盈后可形成极佳的透声窗,三维超声与二维超声一样清晰显示病变的形态、大小、数目、内部回声,同时三维超声还能显示病变的整体、表面形态及肿瘤对膀胱壁的浸润情况,从而提高了其诊断的准确性,并有助于肿瘤术前方案的抉择。对慢性膀胱炎症、憩室、结石、凝血块等膀胱疾病的诊断,也显示出优越性。
3、 在实质性脏器中的应用
肝脏疾病。肝囊肿与肝脓肿二维超声诊断准确性较高,而肝癌与肝内其它性质占位性病变相互间的鉴别有时较为困难。三维超声可从不同方位观察肝表面和边缘轮廓,肿三维超声成像在临床上有广泛的应用前景。可用于精确测量和定位在产科临床上,三维超声成像可用于鉴别早期胎儿是否存在畸形以及检查各个孕期胎儿的生长发育情况;在心血管疾病诊断中,可用于多种心脏疾病以及血管内疾病的检查。随着实时三维超声成像(一般要求帧频必须大于20帧/s)的研究成功,三维超声有望在心脏疾病检查中发挥更大的作用。尽管如此,由于价格和技术上的原因,目前三维超声成像尚未达到临床广泛应用的水平,也还有不少值得研究的问题。
4、 在妇科的应用
三维超声对子宫实质性肿瘤的断,有一定辅助作用。对卵巢和输卵管病变(特别囊性变),可清晰显示其立体外形轮廓、内部结构、有无分隔与性突起、液体浑浊度等。对盆壁转移性病灶合并腹水的人,三维较二维超声的诊断价值更大。文献报道三维超声诊断附件区恶性肿瘤时,其敏感性由二维超声的80%增87%。此外,三维超声于术前可清晰显示恶性肿瘤浸及围脏器的情况,评价肿瘤与子宫、盆壁及髂血管的关系,为中能否切除肿瘤提供有价值的资料。与此同时,应用3CDE可以显示肿瘤内血管空间结构,并计算单位体积内的瘤血管密度,为肿瘤的定性诊断增加新的参考指标。
5、在心血管系统的应用
心脏为具有复杂三维形态的动态器官 三维超声心动图能够提供心脏的三维立体结构,直观显示心脏内部结构的解剖形态、空间关系、立体方位及血流变化等,为各种瓣膜疾病、心肌疾病和先天性心脏复杂畸形的诊断与治疗提供帮助。RT-3DE能实时总体评估一个心动周期心脏的解剖、功能及活动状况,测定心腔容量,估测心室重量及各项心功能指标,分析室壁节段运动等,在冠心病、先天性心脏畸形等心血管疾病的定性和定量诊断方面发挥重要作用。
总结:超声成像是临床上广泛使用的一种成像模式,在某些场合甚至是最好乃至唯一可用的成像模式。各种新技术新方法的开发和利用,使超声仪器的检测和诊断更为有效,应用范围也不断延伸,如用于观察病程的发展情况、细胞的代谢情况等。超声成像技术在过去、现在和将来都是医学影像研究的重点内容之一。随着技术的发展、研究的深入,将会有更多新发现和新技术用于超声成像。
全部0条评论
快来发表一下你的评论吧 !