机器视觉的Gabor Feature特征表达

机器视觉

16人已加入

描述

在机器视觉中,gabor feature是一种比较常见的特征,因为其可以很好地模拟人类的视觉冲击响应而被广泛应用于图像处理, gabor feature 一般是通过对图像与gabor filter做卷积而得到,gabor filter定义为高斯函数与正弦函数的乘积,其表达式如下:

Gabor

gabor filter 的实数部分,相当于各个方向的边缘检测算子,基于这一特性,可以利用 gabor filter来构造gabor space,下图给出一个各个方向的gabor filter:

利用 gabor filter 与 图像 做卷积,可以得到不同方向,不同尺度滤波后的图像,如下所示:

Gabor

可以利用卷积后的图做进一步的处理,用来做各种分类,识别之类的。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分