机器视觉需要镜头的选择和分析和其优点

机器视觉

14人已加入

描述

 

如果把工业相机比喻为人的眼睛,工业镜头就好比是眼球,它直接关系到监看物体的远近、范围和效果。工业镜头的选用应考虑一下几点:

1)工业镜头尺寸应等于或大于工业相机成像面尺寸。例如:1/3″工业相机可选1/3″~1″整个范围内的工业镜头,但水平视角的大小都是一样的。只是使用大于1/3″的工业镜头能够更多地利用成形,更精确了工业镜头中心光路,所以可提高图像质量和分辨率。

2)选用合适的工业镜头焦距。焦距越大,监看距离越远,水平视角越小,监视范围越窄;焦距越小,监看距离越近,水平视角越大,监视范围越宽。工业镜头焦距可按照以下公式估算。

f=A×L/H
(f--镜头焦距;A--摄像机CCD垂向尺寸;L--被摄物体到镜头距离;H--被摄物体高度)

格式 1英寸  2/3英寸 1/2英寸 1/3英寸 1/4英寸 
CCD垂向尺寸  9.6㎜  6.6㎜ 4.8㎜  3.6㎜ 2.7㎜

3)考虑环境光线的变化,光线对图像的采集效果起着十分重要的作用。一般来说,对于光线变化不明显的环境,常选用手动光圈镜头,将光圈手调到一个比较理想的数值后就可不动了;如果光线变化较大,如室外24小时监看,应选用自动光圈,能够根据光线的明暗变化自动调节光圈值的大小,保证图像质量。但需注意的是,如果光线照度不均匀,特别是监视目标与背景光反差较大时,采用自动光圈镜头效果不理想。

4)考虑最佳监看范围。因为工业镜头焦距和水平视角成反比,因此既想看得远,又想看得宽阔和清晰,这是无法同时实现的。每个焦距的镜头都只能在一定范围内达到最佳的监看效果,所以如果监看的距离较远且范围较大,最好是增加摄像机的数量,或采用电动变焦镜头配合云台安装。

5)工业镜头接口与工业相机接口要一致。现在的工业相机和工业镜头通常都是CS型接口,CS型摄像机可以和CS型、C型镜头配接,但和C型镜头接配时,必须在工业镜头和工业相机之间加接配环,否则可能碰坏CCD成像面的保护玻璃,造成CCD工业相机的损坏。C型工业相机不能和CS型工业镜头配接。

近年来利用影像量测物品尺寸已经成为行业发展的趋势。由于相机,影像软件及照明组件等设备的进步,让影像量测物品尺寸的精准度能媲美或更胜于手动或雷射光的量测。

整合光学系统工程的应用,我们可发现光学产品的优劣决定了系统的品质,而远心镜头能执行各种形式的光学量测。

软件工程需要具高分辨率、高对比性和低几何变形特性的拍摄影像来判断出精准的量测数据。

除了光学设备本身的要求,视角的选择也具相当的重要性,在不适当的观测点下量测物体,会造成物体拍摄影像的扭曲。

除了影像处理过程中会造成的干扰,系统设计者也同时将光学配备本身会影响光学量测精准性的几个限制纳入考虑:

1.由于物体摆放位置而造成的不正常放大

2.影像的变形

3.视角选择而造成的误差

4.低影像分辨率

5.不适当光源干扰下造成边界的不确定性

远心镜头能有效降低甚至消除以上的问题,因此远心镜头也成为精密光学量测系统决定性的因素。

图一:不同镜头的光学原理

接下来我们简要的介绍远心镜头是如何有效降低噪声及变形等问题。

一、放大倍率的一致性

光学量测系统通常会自物体正上方拍摄(不纪录物体侧面)以测量其直径或直线距离。由于许多机械零组件无法精准定位或具有高度差或厚度等问题,工程师需要可靠光学量测系统来判定影像与物体的实际间距。


左上图为利用远心镜头拍摄圆柱形零件上的齿条;左下图为利用普通镜头拍摄同样对象的影像;右上图为两个同样对象置于相距100 mm下利用远心镜头拍的影像;右下图为同样情形下利用普通镜头捕捉的影像。

 

 

机器视觉


在一般标准镜头下,物体的影像大小会因为与镜头的距离(标记为“s”)不同而改变。同样的,不同大小的对象可能会受距离的影响而看起来相同。

 

反观远心镜头能容许一定程度的距离改变,在"限定景深"或"远心度区间"内,影像不会因物体与镜头间距离的改变而放大或缩小。

此特性是由于在光学系统中,只有与光轴平行的光束会被接收,因此远心镜头必须大于或等于被摄物体的直径。

“Telecentric”这个单字是来自于希腊前缀”tele-”(遥远)以及字根”center”(中心,在此代表着光学系统的轴心),代表此光学系统的入射光线在通过远心镜头时是与镜头的中央轴心平行,而成像点会在远心镜头的焦点平面上。


在远心系统内,唯有与轴心平行或接近平行的光束会被接受。

在此我们举个简单的例子来说明两种光学系统的差异性。
首先我们使用一个焦距为12毫米的标准镜头 (f = 12 mm) 及以1/3吋的侦测器为接口来测定放置于200毫米 (s = 200 mm) 外的20毫米 (H = 20 mm) 对象。当对象位移1毫米 (ds = 1mm)时,其成像大小将会有约略0.1毫米的差异(如以下公式)。
dH = (ds/s) x H = (1/200)x 20 mm = 0,1 mm

在telecentric光学系统下,成像的大小的变化取决于” telecentric 曲线”,一个高品质远心镜头的曲线角度(theta)能趋近于0.1°(0,0017 rad),代表当物体同样移动1毫米 (ds = 1mm) 时,其成像将只会有0.0017毫米的改变。
dH = ds x theta= 1 x 0,0017 mm = 0,0017 mm

因此相较于标准镜头,远心镜头能将放大倍率的误差缩小至1/10或甚至1/100。

机器视觉

 

上图:远心曲线决定了物体被移动时成像改变的倍率。

“Telecentric range”或是” telecentric depth”代表在维持放大倍率下能摆设物体的范围。然而当物体不在telecentric range中并不代表镜头功能就不具远心的特性,影像的变异程度主要是由镜头的”远心曲线” (由前文的” theta”所定出来的) 或 ”远心度”所决定,这个曲线决定了物体在移动时造成的影像误差大小,然而当主要入射光束与光轴”平行”时,成像的大小就不会因物体置放的距离而影响。由于远心镜头必须接收与光轴平行的入射光源,远心镜头的尺寸必须比拍摄物体还大,因此远心镜头会比一般镜头大且厚重,成本也比一般镜头高。

二、低失真度 (Distortion)

影像的变形是限制光学量测准确性的重要因素之一,再好的镜头都还是无法避免。然而有时候一或数个像素的错误可能具决定性的影响。 失真度也可以说是影像与实际画面的差异度。失真度是利用影像点与影像中心位置的距离和在标准影像(未失真影像)的实际距离之间的差异来计算。举例来说,一个与画面中心距离200像素的标的在影像画面中只有和中心点间隔198个像素,其失真度则为:
distortion = (198-200)/200 = -2/200 = 1%

 

机器视觉


正向放射性失真 (Positive radial distortion) 也被称为 “pincushion” 性失真,负向放射性失真 (negative radial distortion) 可被另称为 “barrel” distortion。此类的变形和影像中心的距离大小有绝对的关联性。
“pincushion” type distortion “barrel” type distortion

 

影像的失真可被视作真实画面经过二维几何性变形的结果,由于通常不是线性改变而是二或三度的多项式的变形,影像会被些许的拉扯及扭曲。
一般的镜头具有数度或数十度的失真度,不过由于大部分的影像镜头是用在一般监测系统或普通摄影中,些许的影像失真是能被容许的,但此瑕疵让精密影像测量变的困难。

高品质的远心镜头只具有低于0.1%失真度的特性,虽然这个数次听起来很小,但在高分辨率的摄影机下仍能造成将近一个像素的误差。因此许多失真的影像会利用软件做校正:将校正用图样(此图样的精密度必须比)置于镜头下方拍摄,之后利用软件计算影像校正公式,将失真影像做校正。由于影像的失真程度与物体和镜头的距离有极高的关联性,因此必须格外留意物体在被摄影时与镜头的距离。

除了与远心镜头的距离以外,物体和远心镜头之间必须尽量保持垂直以避免” non-axially symmetric distortion effects”,所谓的梯形性失真(或称” Keystone” or thin prism effect”) 是另一个影像测量系统中必须克服的问题,如果拍摄物体没有被放置于中心点,此类的影像通常据非对称性也很难利用软件校正。

机器视觉


为一张使用远心镜头所拍摄的不失真影像;中图为同一个画面但具放射性变形的影像;右图为同一个画面但具有梯形性失真的影像。

 

三、视角误差

使用一般光学镜头拍摄非平面物体时,物体的大小会因为距离而改变。因此拍摄管柱形物体时,管柱顶端与底端会成被拍摄成像为同心圆而非同样的双圆。而在远心镜头下,圆柱底端则会与柱顶的圆完全重叠。

机器视觉


为一般镜头下常见的视角误差。右图由远心镜头所拍摄的影像能不会出现此问题。

 

这个现象是因为光束路径的特殊性而造成的,在一般光学镜头下,没有与光轴平行的纵向光束会在感光源件上投射成平行距离,然而只些接收平行光束的远心镜头则不会有同样的问题。

一般镜头通常会将3D物体的立体影像(包括空间距离)转换成2D影像,而远心镜头只会纪录2D平面影像而不受物体的立体距离影响,这个特性在影像量测系统中具有极大的优势。

机器视觉

 

一般镜头会将光束(镜头左边)的纵向距离投射成平行影像,而远心镜头不会有这种情形

四、高影像分辨率

影像的分辨率是利用CTF(contrast transfer function)将影像的对比清晰度量化。
使用不同分辨率镜头拍摄USAF test pattern的结果:左图高分辨率影像,右图低分辨率影像。

 

很多影像系统是利用多个低画素相机搭配低分辨率的便宜镜头,因而只得到非常模糊的影像。而远心镜头的高分辨率让它能搭配低像素高分辨率的相机而依然得到良好的影像品质。

五、锐利的边缘影像

影像拍摄时,背景光线常常会让物体的轮廓变的难以界定(border effects),主要是因为背景的强光会与物体边缘的阴影重叠,除此之外,当光线自不同角度投射于物体上时,某些光源被物体反射后仍然被镜头所接收(如下图十一所示),这种光线常常会被误判来自物体背后,造成边缘判定上的误差,因此当物体具有高度立体特性时容易会出现误差。

机器视觉

 

在一般镜头下常见的Border effects能在远心镜头下有明显的改善

这个问题在远心镜头下能被明显的改善,当光圈缩的够小时,只有与光轴平行的光束能通过镜头,因此被物体反射的光线就不会被接收,影像的精准性也就能明显提升。

如果想要更进一步的提升影像的品质,可利用collimated (或称 “telecentric”) 照明设备搭配远心镜头,在这种配备能让相机与光源互相配合,让所有自collimated光源发出的光都能是被镜头所接收的平行光束,让噪声与曝光时间都能大幅的降低。除此之外,边缘定位的问题也因光源的控制而有明显的改善。

Collimated (telecentric)光源设备只提供与光轴接近平行的光束。

一、对工业镜头的选择,我们首先必须确定客户需求:

•1、视野范围、光学放大倍数及期望的工作距离:
在选择工业镜头时,会选择比被测物体视野稍大一点的工业镜头,以有利于运动控制。

•2、景深要求:
对于对景深有要求的项目,尽可能使用小的光圈;在选择放大倍率的工业镜头时,在项目许可下尽可能选用低倍率工业镜头。如果项目要求比较苛刻时,倾向选择高景深的尖端工业镜头。

•3、芯片大小和相机接口 :
例如2/3”工业镜头支持最大的工业相机耙面为2/3”,它是不能支持1英寸以上的工业相机。

•4、注意与光源的配合,选配合适的工业镜头。

•5、可安装空间:在方案可选择情况下,让客户更改设备尺寸是不现实的。

二、典型案例:齿轮项目

•1、该项目的基本要求是:检测齿轮滚轴的安装质量(缺失)和滚轴的直径公差200微米。在线检测速度为2个/秒。

•2、相机的选择:
客户需求200um,根据精度 = FOV / Resolution,测量齿轮实际大小 为48mm,加上边缘宽度,以60mm作为FOV(H),以此数据算的相机Resolution=FOV(H)/精度=60/0.2=300, 故选择640*480分辨率,曝光时间至少1/2 S的工业相机。

•3、工业镜头的选择
由于这个项目上对检测环境没有特殊要求,人为设定WD=200mm,CCD Size根据相机参数1/4”(对角线长度),乘16转换为4mm,再根据4:3的比例,勾股定理算出水平的直角边为3.2mm。根据Focus level/WD=CCD Size / FOV
f=CCD Size*WD/FOV=3.2*200/60=10.6mm,故选择12mm定焦可满足需求。
综上所述选择640*480分辨率、曝光时间为1/10000 S到30 S的工业相机,12mm定焦CCTV镜头。

 

品牌

 

产地

 

镜头类型

 
施耐德Schneider 德国 定焦、远心 

卡尔蔡司Zeiss

 德国 定焦、远心 

μTron

 日本 定焦、定倍、远心、连续变倍 
Moritex 日本 定焦、定倍、远心、连续变倍 

SPACECOM

 日本 百万像素定焦 
COMPUTAR 日本 百万像素定焦 

宾得PENTAX

 日本 百万像素定焦 
腾龙TAMRON 日本 百万像素定焦 

精工

 日本 百万像素定焦 

VST

 日本 定焦、定倍、远心、连续变倍 

KOWA

 日本 

百万像素定焦

 

视清VICO

 日本 

远心、定倍、定焦、百万像素定焦

 

 

1、远心镜头运用目的
远心镜头目的就是消除由于被测物体(或CCD芯片)离镜头距离的远近不一致,造成放大倍率不一样。分为:物方远心镜头、像方远心镜头和双侧远心镜头。物方远心镜头,通过在像方焦平面上放置孔径光阑,使物方主光线平行于光轴,从而虽然物距改变,但成像位置不变。像方远心镜头,通过在物方焦平面上放置孔径光阑,使像方主光线平行于光轴,从而虽然CCD芯片的安装位置有改变,在CCD芯片上投影成像大小不变。双侧远心镜头,则是兼有以上两种特点,但结构相对复杂。
       

Q:远心镜头为何价格高,有何优点?

A: 远心镜头的设计是采Telecentric原理,低失真、无视角误差,较适合工业上量测应用,所以价位较一般CCTV镜头高。远心镜头另有同轴镜头设计,提供不同工作距离,不同放大倍率供选择。

Q: 远心镜头为何低倍率镜头价格反而高?

A: 因为Telecentric镜头为了要减少失真,让平行光进入,所以镜头设计必须比被照体大,所以低倍率镜头通常口径都很大,所需的镜片材料成本较高,所以价格较高。

Q: 同轴光镜头打同轴光时,中间亮度较亮旁边整暗,是何原因?如何补救?

A: 因为同轴光镜头的投射光线集中于中心5~6㎜左右,如果看的范围较大,边缘附近光线较暗,这是低倍率同轴光镜头常有的现象。可以外加环形光源来补足光线不够地方。

Q: 远心镜头可否搭配CCTV用的2倍镜使用?

A: 可以,但是影像质量变差,所需光强度更强,不建议使用。

Q: 远心镜头规格上,标示镜头分解能(解析力)是代表什么意思?

A: 镜头解析力的定义是镜头能看清楚最小物体边缘的能力,如果低于此分解能,就无法看清楚了。须另外找解析力更高的镜头,如高倍显微物镜。

Q: 远心镜头景深为何不能很长?

A: 远心镜头设计时即考虑到景深、倍率、光圈、工作距离等参数取得最佳点,所以景深均为固定的数值,如要增长景深,而牺牲别的参数,会影响镜头质量。

Q: 如果要看到1μm的物体可用何种镜头?

A: 要看到小于1μm以下物体,必须用高倍显微物镜,但工作距离变得很小(约7㎜),景深变得很浅了。

Q: 用远心镜头所放大的影像到底是多少倍?

A: 影像实总际放大倍率是等于镜头光学倍率×Monitor放大倍率,Monitor放大倍率是Monitor对角线除上CCD Sensor对角线(1/3〞CCD Sensor投射到14吋Monitor是59.3倍)。

Q: 远心镜头除了C-mount之外,可否提供其它mount选择?

A: 除了C-mount之外,还有直径φ17㎜及直径φ12㎜二种mount供选择,这些mount是针对笔型CCD专用的镜头。

三、像方远心光路原理及作用

像方主光线平行于光轴主光线的会聚中心位于物方无限远,称之为:像方远心光路
作用:可以消除像方调焦不准引入的测量误差,用途:大地测量仪器

机器视觉

 

四、双侧远心光路原理及作用

 

机器视觉

 

综合了物方/像方远心的双重作用。主要用于视觉测量检测领域。

优势:
1、大景深;
2、景深范围内物像倍率不变
3、低畸变通常<1%(全幅画面)
4、垂直成像时,无投影现象

劣势:
1、体积大、重量沉,由于平行光路入射,镜头的口径要大于被摄物体
2、焦距固定,变焦困难
3、工作距离相对较短
4、光阑小,需要更强的照明

在设计工业机器视觉系统时,使用工业数字相机还是工业模拟相机是最重要的决定之一。二者各有其优缺点,但归根结底要根据成本和一些关键操作因素来选择。如果考虑了这些因素,哪一项技术更有优势就会明朗化了。

机器视觉基础
机器视觉被应用于自动质量检验、工艺控制、参数测量和自动组装等等许多领域。在这些系统中,相机是决定着成本、速度和精度的关键组件。工业模拟相机和工业数字相机都可以用在这些系统中,而了解工业相机的性能规格及其在各种视觉任务中的重要性,对于把机器视觉付诸工业控制是最基本的一步。

机器视觉系统包括三个主要部分:工业相机、采集卡和存储并分析图像以提取信息的计算机(或图像处理器)。图像处理器和采集卡属于相对容易选择的电子装置,它们的主要参数是存储能力和处理速度。

工业相机是这些系统中情况最为复杂的部分。现代的工业模拟相机和工业数字相机采用电荷耦合器件(CCD)或互补金属氧化物半导体(CMOS)芯片来捕获图像并生成电子信号发送给计算机进行处理。

CCD和CMOS成像器由一系列方形光电池组成,它们将收集到的光子转化为电子,并将生成的电荷积蓄起来。在CCD中,当从芯片中每次读取一个像素时,电荷被转换成电压;而在CMOS中,每个光敏器件旁边的电路将光能转化成电压。

二者在图像质量上没有明显的优劣之分。基于CMOS的工业相机需要的部件较少,电耗较低,提供数据的速度也比基于CCD的相机快; 但CCD则是更为成熟的技术,能够以较低的噪声提供质量更好的图像,而弱点是数据传输速度较慢,不太灵活,部件较多和电耗较高。

信号精度
CCD和CMOS芯片在内部都生成模拟信号,因此,模拟相机和数字相机之间的主要区别在于图像是在哪里被数字化的。数字相机在相机里将信号数字化,并且通过串行总线接口(比如FireWire, USB, Camera Link, Gigabit Ethernet)将信号以数字方式传输给计算机(或图像处理器)。而在另一方面,模拟相机系统并不是在其内部将图像信号数字化(数字化是由计算机完成的),所以,模拟信息是通过同轴电缆而进行传输的。

尽管两种方法都能够有效地传输信号,但模拟信号可能会由于工厂内其他设备(比如电动机或高压电缆)的电磁干扰而造成失真。随着噪声水平的提高,模拟相机的动态范围(原始信号与噪声之比)会降低。动态范围决定了有多少信息能够被从相机传输给计算机。

数字信号不受电噪声影响,因此,数字相机的动态范围更高,能够向计算机传输更精确的信号。数字相机的典型动态范围在55分贝到60分贝之间,而模拟相机则为45分贝到50分贝左右。

所用电缆的长度和类型也影响着信号的精度。模拟相机的电缆简单而且便宜,在电噪声导致信号严重失真之前能够将信号可靠地300米以上。由于数字相机传输的是高带宽信号,电缆的长度受电缆中信号良师衰减(损失)水平的限制。根据使用的通信协议的不同,电缆的典型长度如下:
· FireWire: 大约10米到20米
· USB: 大约10米到 20米
· Camera Link: 大约10米

现在,市场上有了采用千兆位以太网标准电缆的新系统。这些电缆能够将数字图像数据传输100米左右而不发生损失。

分辨率和捕获速度
分辨率是描述相机性能的重要参数之一,它包括两个方面:
· 阵列中传感单元或称像素的数量
· 每个传感单元的大小

模拟相机通常是基于视频图形阵列(VGA)成像格式,分辨率被限制在大约640×480像素。这只是机器视觉系统要求的下限。而在另一方面,数字相机能够达到80兆像素甚至更高。模拟相机和数字相机典型的像素大小在3微米到20微米范围内。

第二个重要参数是帧速,或者说相机连续提供图像的速度。帧速越高,在给定时间内能够完成的检验、测量或识别工作就越多。像素数和帧速之间存在着相互影响,所以,相机的像素数越多,其帧速越低。但是,这并非是一成不变的规则,因为尺寸越小的半导体转换速度通常就越快,所以像素数相同的两台相机可能具有差别很大的帧速。

640×480像素模拟相机的典型帧速为每秒30帧,而分辨率为2兆像素(1600×1200像素)的数字相机能够达到相同的帧速。16兆像素的数字相机帧速约为每秒3帧。

另外,相机传感器可采用多端口设计,将图像分解成片段以同时读出。还可以在软件的控制下只读取图像中“感兴趣”的部位而不是读取全部传感器阵列,同样能够缩短传输时间。

其他因素

除了分辨率和帧速,其他重要的设计因素还包括动态范围和灵敏度。

动态范围或图像每个像素的字节数决定着采集卡需要的存储容量以及图像处理器需要的算法精度。它也影响着传感器的曝光宽容度。每像素只有几个字节的相机将无法像字节数更高的相机那样满足很宽的照明条件范围。一般来说,数字相机的动态范围指标更好一些,因为它们的抗噪声性能更好。

传感器灵敏度也决定着可靠地使用相机所需要的照明条件。在光线不好或者为防止运动图像模糊而提高快门速度的情况下,要求相机具有更高的灵敏度。

同波长有关的相机灵敏度也许非常重要。根据应用的不同,可能需要采用发光二极管甚至红外或紫外照明,相机的波长灵敏度也应当匹配。最后,相机生成彩色或者单色图像的能力也十分重要。

关于总成本的考虑
各个设计参数共同影响着相机的成本。典型情况下,由于传感器尺寸的原因,像素数越高的相机就越昂贵。与此类似,在一定的分辨率下,帧速提高,成本也趋向于增加。同时提高帧速和分辨率通常要求相机具有多端口读出,这使系统的复杂程度增加,因而提高了成本。

从上世纪七十年代起,许多供应商都开始提供基于CCD和CMOS技术的模拟相机。典型的价位在200美元左右。模拟相机采集卡的价位也在200美元左右。

相比之下,数字相机的价位在1,000美元到20,000美元范围内大幅度变化,数字相机采集卡的价位在1,000美元到2,000美元之间。但是,随着数字相机和采集卡变得越来越普及,它们的价位也在逐渐降低。

在对成本进行比较时,设备的价格还只是问题的一个方面。设计人员还必须考虑软件、硬件、安装、维护和升级等方面的成本,还有,给定的相机技术是否能够达到要求的性能。

完成特定任务所需要的工业相机数量在安装成本中占到了一定比例。举例来说,从1毫米见方的检验区域中解析出1微米见方的片段,可能需要用到5台模拟相机和采集卡,而这些制备必须保持同步以获得清晰的图像。

只使用1台百万像素的工业数字相机和采集卡就可以解析同样大小的区域,而且无需在计算机中同步处理多幅图像。例如,一家汽车制造商的保险杠检验系统需要12台模拟相机、12片采集卡12套软件和3台计算机。公司发现,就算可能,使所有相机的图像同步化以获得一幅保险杠的可靠图像也是难度相当大的。用1台百万像素的数字相机、1片采集卡和1台计算机取代了这个相机阵列后,系统的安装和维护都变得十分简单和方便。

一般来说,典型的数字相机需要更长的时间进行安装和设定,但对于前述应用实例而言,需要的数字相机数量大为减少。因此,维护成本也将大幅度降低。另外,数字相机的功能性和灵活性都更强,能够快速重新编程,在系统运行过程中即可进行现场固件升级。而相比之下,模拟相机则必须被送回制造厂才能进行性能升级。

最后一项成本因素是功率消耗。典型的模拟相机需要5瓦到10瓦操作功率,而分辨率指标相当的数字相机则不到1瓦。

应用要求
对于一项应用,选择什么样的工业相机合适,取决于机器视觉系统想要达到什么目标。视觉检验、非接触式测量、物体识别和定位是三个常见的应用,每一个都有不同的要求。

典型的检验系统将图像同模板或者“已知合格品”图像进行对比以检查偏差。高质量的图像一般需要用图像处理器来进行可靠的对比。这意味着,工业相机必须同时具有高分辨率和每像素足够的字节数。可能也需要彩色成像能力。

非接触式测量计算一个物体占据的像素数量,并将计数结果转化成尺寸数值。这样的系统可能需要高分辨率,而每像素的字节数要求可能不必太高。图像处理器通常只提取图像的边缘或外形轮廓信息,所以,一般并没有很高的动态范围和彩色能力要求。

物体识别和定位有各种各样的要求。在许多情况下,图像处理系统在图像中搜寻以识别出基准特征。需要的分辨率取决于这些特征相对于整个图像尺寸的大小。识别系统可能会需要彩色成像能力。

为机器视觉系统选择相机时要认真考虑工业相机的性能和成本。虽然工业模拟相机远比工业数字相机便宜,但它们的分辨率和图像质量较低,所以可能会被局限在要求不太高的应用中。数字相机比模拟相机昂贵,但它们的高成本可能值得为要求高速度、高准确度和高精度的应用而付出。

四种工业相机接口技术的比较

接口技术

 

GigE

 

Firewire

 

USB

 

Camera Link

 

标准类型

 

Commercial

 

Consumer

 

Consumer

 

Commercial

 

连接方式

 

点对点或LAN link

(Cat 5 TP - RJ45)

 

点对点

– 共享总线

 

主/从

– 共享总线

 

点对点

– (MDR 26 pin)

 

带宽

 

<1000Mb/s
连续模式

 

<400Mb/s
连续模式

 

<12Mb/s USB1 <480Mb/s USB2 突发模式

 

<2380Mb/s (base) <7140Mb/s (full)
连续模式

 

距离:

-max w/switch

-max w/fiber

 

<100m(no switch)

No Limit

No Limit

 

<4.5m

72m

200m

 

<5m

30m

 

<10m

 

可连接设备数量

 

Unlimited

 

63

 

127

 

1

 

PC Interface

 

GigE NIC

 

PCI card

 

PCI card

 

PCI Frame grabber

 

 

1、模拟相机&&数字相机
模拟相机必须带数字采集卡,标准的模拟相机分辨率很低,另外帧率也是固定的。这个要根据实际需求来选择。另外模拟相机采集到的是模拟信号,经数字采集卡转换为数字信号进行传输存储。模拟信号可能会由于工厂内其他设备(比如电动机或高压电缆)的电磁干扰而造成失真。随着噪声水平的提高,模拟相机的动态范围(原始信号与噪声之比)会降低。动态范围决定了有多少信息能够被从相机传输给计算机。数字相机采集到的是数字信号,数字信号不受电噪声影响,因此,数字相机的动态范围更高,能够向计算机传输更精确的信号。

2、相机分辨率
根据系统的需求来选择相机分辨率的大小,下面以一个应用案例来分析。
应用案例:假设检测一个物体的表面划痕,要求拍摄的物体大小为10*8mm,要求的检测精度是0.01mm。首先假设我们要拍摄的视野范围在12*10mm,那么相机的最低分辨率应该选择在:(12/0.01)*(10/0.01)=1200*1000,约为120万像素的相机,也就是说一个像素对应一个检测的缺陷的话,那么最低分辨率必须不少于120万像素,但市面上常见的是130万像素的相机,因此一般而言是选用130万像素的相机。但实际问题是,如果一个像素对应一个缺陷的话,那么这样的系统一定会极不稳定,因为随便的一个干扰像素点都可能被误认为缺陷,所以我们为了提高系统的精准度和稳定性,最好取缺陷的面积在3到4个像素以上,这样我们选择的相机也就在130万乘3以上,即最低不能少于300万像素,通常采用300万像素的相机为最佳(我见过最多的人抱着亚像素不放说要做到零点几的亚像素,那么就不用这么高分辨率的相机了。比如他们说如果做到0.1个像素,就是一个缺陷对应0.1个像素,缺陷的大小是由像素点个数来计算的,试问0.1个像素的面积怎么来表示?这些人以亚像素来忽悠人,往往说明了他们的没有常识性)。换言之,我们仅仅是用来做测量用,那么采用亚像素算法,130万像素的相机也能基本上满足需求,但有时因为边缘清晰度的影响,在提取边缘的时候,随便偏移一个像素,那么精度就受到了极大的影响。故我们选择300万的相机的话,还可以允许提取的边缘偏离3个像素左右,这就很好的保证了测量的精度。

3、CCD&CMOS
如果要求拍摄的物体是运动的,要处理的对象也是实时运动的物体,那么当然选择CCD芯片的相机为最适宜。但有的厂商生产的CMOS相机如果采用帧曝光的方式的话,也可以当作CCD来使用的。又假如物体运动的速度很慢,在我们设定的相机曝光时间范围内,物体运动的距离很小,换算成像素大小也就在一两个像素内,那么选择CMOS相机也是合适的。因为在曝光时间内,一两个像素的偏差人眼根本看不出来(如果不是做测量用的话),但超过2个像素的偏差,物体拍出来的图像就有拖影,这样就不能选择CMOS相机了。

4、彩色&黑白
如果要处理的是与图像颜色有关,那当然是采用彩色相机,否则建议你用黑白的,因为黑白的同样分辨率的相机,精度比彩色高,尤其是在看图像边缘的时候,黑白的效果更好。

5、帧率
根据要检测的速度,选择相机的帧率一定要大于或等于检测速度,等于的情况就是你处理图像的时间一定要快,一定要在相机的曝光和传输的时间内完成。

6、线阵&面阵
对于检测精度要求很高,面阵相机的分辨率达不到要求的情况下,当然线阵相机是必然的一个选择。

7、传输接口
根据传输的距离、稳定性、传输的数据大小(带宽)选择USB、1394、Camerlink、百兆/千兆网接口的相机。

8、CCD靶面
靶面尺寸的大小会影响到镜头焦距的长短,在相同视角下,靶面尺寸越大,焦距越长。在选择相机时,特别是对拍摄角度有比较严格要求的时候,CCD靶面的大小,CCD与镜头的配合情况将直接影响视场角的大小和图像的清晰度。因此在选择CCD尺寸时,要结合镜头的焦距、视场角一起选择,一般而言,选择CCD靶面要结合物理安装的空间来决定镜头的工作距离是否在安装空间范围内,要求镜头的尺寸一定要大于或等于相机的靶面尺寸。

9、相机的价格
同样参数的相机,不同的厂家价格各不相同,这就靠大家与厂家沟通和协商了。一般说来,如果你有量的话,整体价格跟你单买一个的价格是差别很大的。

机器视觉

 

 

工业相机到传感器对应放大倍率

工业相机像幅

 

传感器尺寸( 对角线 )

 

9’’

 

12’’

 

13’’

 

20’’

 

27’’

 

1/4’’

 

57.2x

 

76.2x

 

82.6x

 

127x

 

171.5x

 

1/3’’

 

38.1x

 

50.7x

 

55.0x

 

84.6x

 

114.1x

 

1/2’’

 

28.6x

 

38.1x

 

41.3x

 

63.5x

 

85.7x

 

 

2/3’’

 

 

20.8x

 

27.7x

 

30.0x

 

46.2x

 

62.3x

 

 

1’’

 

 

14.3x

 

22.2x

 

23.8x

 

31.8x

 

42.9x

 

 

1. 什么是CCD摄像机?
CCD是Charge Coupled Device(电荷耦合器件)的缩写,它是一种半导体成像器件,因而具有灵敏度高、抗强光、畸变小、体积小、寿命长、抗震动等优点。

2. CCD摄像机的工作方式
被摄物体的图像经过镜头聚焦至CCD芯片上,CCD根据光的强弱积累相应比例的电荷,各个像素积累的电荷在视频时序的控制下,逐点外移,经滤波、放大处理后,形成视频信号输出。视频信号连接到监视器或电视机的视频输入端便可以看到与原始图像相同的视频图像。

3. 分辨率的选择
评估摄像机分辨率的指标是水平分辨率,其单位为线对,即成像后可以分辨的黑白线对的数目。常用的黑白摄像机的分辨率一般为380-600,彩色为380-480,其数值越大成像越清晰。一般的监视场合,用400线左右的黑白摄像机就可以满足要求。而对于医疗、图像处理等特殊场合,用600线的摄像机能得到更清晰的图像。

4. 成像灵敏度
通常用最低环境照度要求来表明摄像机灵敏度,黑白摄像机的灵敏度大约是0.02-0.5Lux(勒克斯),彩色摄像机多在1Lux以上。0.1Lux的摄像机用于普通的监视场合;在夜间使用或环境光线较弱时,推荐使用0.02Lux的摄像机。与近红外灯配合使用时, 也必须使用低照度的摄像机。另外摄像的灵敏度还与镜头有关,0.97Lux/F0.75相当于2.5Lux/F1.2相当于3.4Lux/F1.

5. 参考环境照度:
夏日阳光下 100000Lux 阴天室外 10000Lux
电视台演播室 1000Lux 距60W台灯60cm桌面 300Lux
室内日光灯 100Lux 黄昏室内 10Lux
20cm处烛光 10-15Lux 夜间路灯 0.1Lux

6. 电子快门
电子快门的时间在1/50-1/100000秒之间, 摄像机的电子快门一般设置为自动电子快门方式,可根据环境的亮暗自动调节快门时间,得到清晰的图像。有些摄像机允许用户自行手动调节快门时间,以适应某些特殊应用场合。

7. 外同步与外触发
外同步是指不同的视频设备之间用同一同步信号来保证视频信号的同步,它可保证不同的设备输出的视频信号具有相同的帧、行的起止时间。为了实现外同步,需要给摄像机输入一个复合同步信号(C-sync)或复合视频信号。外同步并不能保证用户从指定时刻得到完整的连续的一帧图像,要实现这种功能,必须使用一些特殊的具有外触发功能的摄像机。

8. 光谱响应特性
CCD器件由硅材料制成,对近红外比较敏感,光谱响应可延伸至1.0um左右。其响应峰值为绿光(550nm)。夜间隐蔽监视时,可以用近红外灯照明,人眼看不清环境情况,在监视器上却可以清晰成像。由于CCD传感器表面有一层吸收紫外的透明电极,所以CCD对紫外不敏感。彩色摄像机的成像单元上有红、绿、兰三色滤光条,所以彩色摄像机对红外、紫外均不敏感。

9. CCD芯片的尺寸
CCD的成像尺寸常用的有1/2"、1/3"等, 成像尺寸越小的摄像机的体积可以做得更小些。在相同学镜头下,成像尺寸越大,视场角越大。

机器视觉系统是指通过机器视觉产品(即图像摄取装置,分为CMOS摄像头和CCD摄像头两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

在机器视觉系统中,包含独立的工业摄像头,采用业界标准的电气接口,如火线IEEE1394接口摄像头、USB接口摄像头或千兆以太网GigE摄像头(GigE Vision interface)等。机器视觉摄像头的典型应用可分为离线处理功能的摄像头和在线处理功能的摄像头。

离线处理功能的摄像头可单独对摄像头供电,并可通过电气接口将原始数据传送至主机。视频传输既可以是连续帧,也可以是单帧数据,具体取决于应用的需要。单帧捕获与视频传输被称作触发模式,需要外部系统通常以CMOS级向摄像头系统发送电子脉冲。摄像头逻辑将启动一个帧集成,并通过电气接口将扫描的数据发送至主机。在某些情况下,原始数据通过总线与同步信号、时钟和数据一起发送给帧接收器等终端数据采集系统。帧接收器在存储器中存储数据,随后可由主机应用软件对数据进行存取以处理和控制。

离线处理的一大优势在于,单靠一个主机就能满足摄像头操控与系统控制两者之需。但是由于视频数据从摄像头每帧传输存在一定的延迟,因此这种处理方式不适用于实时处理的应用,比如器件生产过程中传送带上的产品检查。

由于近来DSP处理器发展非常快,已经具备实时执行复杂算法的计算功能,因此也使得摄像头的在线处理成为可能。在线处理功能的摄像头包括感应器与DSP处理器,二者可通过非粘接逻辑、也可通过某种粘接逻辑连接。DMA 将感应器扫描的视频直接发送至DSP 存储器,并进行逐帧处理。控制函数的最终结果由处理器在被控制的系统中直接启动,或在主机上作为命令启动。

在线处理功能的摄像头进行视频处理的优势在于,数据处理可实时进行,而且在火线、USB 或千兆以太网接口上没有分组处理的负担。可采用字节优化型汇编代码,在时钟频率超过300 MHz的DSP处理器上加快实时处理速度。

图像算法的实时处理对检查应用至关重要,例如,能够检查出传送带上移动过快的的器件。一个帧图像的计算完成并采取相应行动后,才可以继续向系统传输下一个图像帧。

在实际应用中,应依据具体的应用环境来选择摄像头,不管是离线处理功能的摄像头还是在线处理功能的摄像头,都具有各自的技术特点,选择合适合理的摄像头才能更好的体现出机器视觉系统的优越性。

CMOS(Complementary Metal Oxide Semiconductor)是互补式金属氧化物半导体的英文缩写,它将NMOS和PMOS二个相反极性的MOS半导体串起来,形成了集成电路中广泛使用的一个基本单元。例如计算机中用量最大的内存——动态存储器,就是用CMOS工艺制造的。

CMOS的摄像机并不比CCD摄像机出现的时间晚多少,CCD在六十年代末,而CMOS在七十年代初相继开发出来,后来之所以CCD占了统治地位,是因为在当时的工艺制造技术条件下,CMOS的图像质量太差了。直至1990年,新工艺的发展,使开发人员再一次对CMOS产生了兴趣,主要是看到了CMOS的低功耗、高集成(整个摄像机集成在一片晶体内)、低制造成本(基于不需重新建立新的生产线,可以在已有的主流的逻辑和存储器CMOS流水线中进行)。经过大量的投入和努力,CMOS摄像机在近几年已获得了极大的成功,已形成了对CCD的强大挑战。形成了CCD和CMOS二个激烈竞争的发展方向和阵营。

在过去,CMOS图像传感器给人的印象是低端产品,例如商务用传真机、复印机、扫描仪,到今日,以娱乐为主的摄像机、手机拍摄组件,直至大紫大红的网上摄像机也多为CMOS传感器。同时,CMOS摄像机在图像质量上已取得长足的进步,即使在对图像质量要求较高的投影仪上也获得了使用。

无论是CMOS还是CCD,它们都是用光敏像元阵列将入射的光图像转换成像元内的电荷,所不同的是将这些像元中的电荷取出,并转换成电压的方式和途径不同。CCD是用电荷量来载荷图像信息的,而CMOS是用电压量来载荷图像信息的。

CMOS和CCD的工作过程如下图所示,从图可以看出,CCD像元将光转换为电荷后,用电荷耦合的方法,将电荷逐点、逐行地用电荷移位寄存器移出,直至电荷/电压转换器,图像信息用电荷的形式在芯片内移动输出;而CMOS则以完全不同的方式将图像信息送出像元阵列,从图(b)可以看出,每一个像元光敏单元都有一个电荷/电压转换单元与之相伴,所以像元电荷马上转换成为电压,再通过与之对应的矩阵开关,将电压送出阵列,所以CMOS的图像信息是以电压的形式传送输出的。由于这种完全不同的结构,为它们带来了各自的长处和短处。

机器视觉

 

CCD和CMOS工作过程示意图

CMOS摄像机有超强的集成度、低功耗和小尺寸的优势;但在图像质量,特别在低照度下和灵活性方面就要逊色多了。所以CMOS适合于批量大、有空间和重量限制,而图像质量要求不是太高的领域,例如保安、生物测量仪等领域使用,包括机器视觉系统中对图像质量要求不严的场合,例如数字或文学识别、易区分的缺陷检测、简单物体几何分类、简单场景自动导航等等。
      

机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。

半导体行业是最先利用机器视觉技术进行检测的行业,其他行业也随之而来。作为生产机械的OEM的设计工程师,最基本的问题就是:“我是要检测这个部件还是整个这个产品”。检测可以得到高质量的产品,但是也会有这样的事实存在:检测成本或者产品质量要求并不需要这样的检测。比如说牙签,假设在一个装有500个牙签的盒子里有一两个不合格,大多数人都不会怎么担心。但是对于很多产品,假如前面的盒子里装的不是牙签,而是针头,试想不合格品可能会带来什么样的后果,所以产品功能性的检测都是不可缺少的,即使只是外观检测,要证明内在的品质也必须要做到无缺陷。因此,为了达到这个目的,许多OEM将机器视觉应用到他们将要卖给用户的系统中。机器视觉能够为整个系统增值,表现在三个方面:提高生产效率,提高制造过程的精确性,减少成本。

那么,对于一个设计工程师来说,怎么样才能知道机器视觉是否适合他的系统呢?尽管最早的最基本的机器视觉系统在20世纪70年代引入,工业就将其视为主流应用。这就导致设计工程师要考虑它是否合适他们的应用,同时要考虑利用机器视觉检测的成本与其所能带来的利润。
高复杂度产品行业,比如说半导体行业和电子行业,由于它们的复杂性和小型化,从传统上推动着机器视觉市场的发展。但是如今,所有产业,包括自动化、制药、造纸等等都依靠机器视觉系统检测产品以提高产品质量。工业专家们预言:在未来的20年到50年,机器视觉将成为横跨所有行业的通用性技术,几乎所有出产的产品都会由机器视觉系统来检测。

使用机器视觉系统有以下五个主要原因:

精确性——由于人眼有物理条件的限制,在精确性上机器有明显的优点。即使人眼依靠放大镜或显微镜来检测产品,机器仍然会更加精确,因为它的精度能够达到千分之一英寸。

重复性——机器可以以相同的方法一次一次的完成检测工作而不会感到疲倦。与此相反,人眼每次检测产品时都会有细微的不同,即使产品时完全相同的。

速度——机器能够更快的检测产品。特别是当检测高速运动的物体时,比如说生产线上,机器能够提高生产效率。

客观性——人眼检测还有一个致命的缺陷,就是情绪带来的主观性,检测结果会随工人心情的好坏产生变化,而机器没有喜怒哀乐,检测的结果自然非常可观可靠。

成本——由于机器比人快,一台自动检测机器能够承担好几个人的任务。而且机器不需要停顿、不会生病、能够连续工作,所以能够极大的提高生产效率。

一旦工程师决定使用机器视觉系统,就需要建立这个系统。其中要素包括:照明光源、工件放置(夹具)、工业镜头、工业相机、位置传感器、控制逻辑、以及图像采集卡,图像处理软件、技术支持。由于大多数厂商在这个领域都没有经验,机会来了。所以,寻找一个既了解核心技术又能为其提供系统所需产品的供应商就成为关键问题。

机器视觉

 

图1.1.1 基于PC的视觉系统基本组成

典型的基于PC的视觉系统通常由如图1.1.1所示的几部分组成:
①工业相机与工业镜头——这部分属于成像器件,通常的视觉系统都是由一套或者多套这样的成像系统组成,如果有多路相机,可能由图像卡切换来获取图像数据,也可能由同步控制同时获取多相机通道的数据。根据应用的需要相机可能是输出标准的单色视频(RS-170/CCIR)、复合信号(Y/C)、RGB信号,也可能是非标准的逐行扫描信号、线扫描信号、高分辨率信号等。

②光源——作为辅助成像器件,对成像质量的好坏往往能起到至关重要的作用,各种形状的LED灯、高频荧光灯、光纤卤素灯等都容易得到。
③传感器——通常以光纤开关、接近开关等的形式出现,用以判断被测对象的位置和状态,告知图像传感器进行正确的采集。

④图像采集卡——通常以插入卡的形式安装在PC中,图像采集卡的主要工作是把相机输出的图像输送给电脑主机。它将来自相机的模拟或数字信号转换成一定格式的图像数据流,同时它可以控制相机的一些参数,比如触发信号,曝光/积分时间,快门速度等。图像采集卡通常有不同的硬件结构以针对不同类型的相机,同时也有不同的总线形式,比如PCI、PCI64、Compact PCI,PC104,ISA等。

⑤PC平台——电脑是一个PC式视觉系统的核心,在这里完成图像数据的处理和绝大部分的控制逻辑,对于检测类型的应用,通常都需要较高频率的CPU,这样可以减少处理的时间。同时,为了减少工业现场电磁、振动、灰尘、温度等的干扰,必须选择工业级的电脑。

⑥视觉处理软件——机器视觉软件用来完成输入的图像数据的处理,然后通过一定的运算得出结果,这个输出的结果可能是PASS/FAIL信号、坐标位置、字符串等。常见的机器视觉软件以C/C++图像库,ActiveX控件,图形式编程环境等形式出现,可以是专用功能的(比如仅仅用于LCD检测,BGA检测,模版对准等),也可以是通用目的的(包括定位、测量、条码/字符识别、斑点检测等)。

⑦控制单元(包含I/O、运动控制、电平转化单元等)——一旦视觉软件完成图像分析(除非仅用于监控),紧接着需要和外部单元进行通信以完成对生产过程的控制。简单的控制可以直接利用部分图像采集卡自带的I/O,相对复杂的逻辑/运动控制则必须依靠附加可编程逻辑控制单元/运动控制卡来实现必要的动作。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分