直接转矩控制系统解析

电子常识

2640人已加入

描述

  直接转矩控制概述

  直接转矩控制(Direct Torque Control——DTC),国外的原文有的也称为Direct self-control——DSC,直译为直接自控制,这种“直接自控制”的思想以转矩为中心来进行综合控制,不仅控制转矩,也用于磁链量的控制和磁链自控制。直接转矩控制与矢量控制的区别是,它不是通过控制电流、磁链等量间接控制转矩,而是把转矩直接作为被控量控制,其实质是用空间矢量的分析方法,以定子磁场定向方式,对定子磁链和电磁转矩进行直接控制的。这种方法不需要复杂的坐标变换,而是直接在电机定子坐标上计算磁链的模和转矩的大小,并通过磁链和转矩的直接跟踪实现PWM脉宽调制和系统的高动态性能。

  直接转矩控制(Direct Torque Control,DTC)变频调速,是继矢量控制技术之后又一新型的高效变频调速技术。20 世纪80 年代中期,德国鲁尔大学的M.Depenbrock教授和日本的I.Takahashi教授分别提出了六边形直接转矩控制方案和圆形直接转矩控制方案。1987 年,直接转矩控制理论又被推广到弱磁调速范围。

  直接转矩控制技术用空间矢量的分析方法,直接在定子坐标系下计算与控制电动机的转矩,采用定子磁场定向,借助于离散的两点式调节(Band-Band)产生PWM 波信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。它省去了复杂的矢量变换与电动机的数学模型简化处理,没有通常的PWM 信号发生器。它的控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确。直接转矩控制也具有明显的缺点即:转矩和磁链脉动。

  直接转矩控制系统解析

  直接转矩控制系统简称DTC(Direct Torque Control)是在20世纪80年代中期继矢量控制技术之后发展起来的一种高性能异步电动机变频调速系统。1977年美国学者A.B.Plunkett在IEEE杂志上首先提出了直接转矩控制理论,1985年由德国鲁尔大学Depenbrock教授和日本Tankahashi分别取得了直接转矩控制在应用上的成功,接着在1987年又把直接转矩控制推广到弱磁调速范围。不同于矢量控制,直接转矩控制具有鲁棒性强、转矩动态响应速度快、控制结构简单等优点,它在很大程度上解决了矢量控制中结构复杂、计算量大、对参数变化敏感等问题

  传统的直接转矩控制技术的主要问题是低速时转矩脉动大。为了降低或消除低速时的转矩脉动,提高转速、转矩控制精度,扩大直接转矩控制系统的调速范围,近些年来提出了许多新型的直接转矩控制系统。虽然这些新型直接转矩控制技术在不同程度上改善了调速系统的低速性能,但是其低速性能还是不能达到矢量控制的水平。

  最近出现了一种间接转矩控制技术,受到了很多学者的关注。间接转矩控制技术具有优良的低速性能,另外由于其独特的控制思想可以降低逆变器的开关频率,从而特别适用于大容量调速场合。

  直接转矩控制的目标是:通过选择适当的定子电压空间矢量,使定子磁链的运动轨迹为圆形,同时实现磁链模值和电磁转矩的跟踪控制。定子磁链和电磁转矩分别采用闭环控制,Ψs*、Tei*分别为定子磁链模值和电磁转矩的给定信号,、分别为定子磁链模值和电磁转矩的估计值,作为反馈信号使用。

  根据误差信号,转矩调节器输出转矩增、减控制信号CT; 磁链调节器输出磁链增、减控制信号CΨ。开关表根据CΨ、CT以及估计器输出的磁链扇区信号,选择正确的定子电压空间矢量,输出控制字SA,B,C给逆变器。

  直接转矩控制和矢量控制相比直接转矩控制具有结构简单,转矩响应速度快、对参数变化鲁棒性强的优点。直接转矩控制的主要缺点是在低速时转矩脉动大,其主要原因是:

  (1) 由于转矩和磁链调节器采用滞环比较器,不可避免地造成了转矩脉动;

  (2) 在电动机运行一段时间之后,电机的温度升高,定子电阻的阻值发生变化,使定子磁链的估计精度降低,导致电磁转矩出现较大的脉动;

  (3) 逆变器开关频率的高低也会影响转矩脉动的大小,开关频率越高转矩脉动越小,反之开关频率越低转矩脉动越大。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分