控制/MCU
1 STM32标准外设库概述
STM32标准外设库之前的版本也称固件函数库或简称固件库,是一个固件函数包,它由程序、数据结构和宏组成,包括了微控制器所有外设的性能特征。该函数库还包括每一个外设的驱动描述和应用实例,为开发者访问底层硬件提供了一个中间API,通过使用固件函数库,无需深入掌握底层硬件细节,开发者就可以轻松应用每一个外设。因此,使用固态函数库可以大大减少用户的程序编写时间,进而降低开发成本。每个外设驱动都由一组函数组成,这组函数覆盖了该外设所有功能。每个器件的开发都由一个通用API (application programming interface 应用编程界面)驱动,API对该驱动程序的结构,函数和参数名称都进行了标准化。
ST公司2007年10月发布了V1.0版本的固件库,MDK ARM3.22之前的版本均支持该库。2008年6月发布了V2.0版的固件库,从2008年9月推出的MDK ARM3.23版本至今均使用V2.0版本的固件库。V3.0以后的版本相对之前的版本改动较大,本书使用目前较新的V3.4版本。
2 使用标准外设库开发的优势简单的说,使用标准外设库进行开发最大的优势就在于可以使开发者不用深入了解底层硬件细节就可以灵活规范的使用每一个外设。标准外设库覆盖了从GPIO到定时器,再到CAN、I2C、SPI、UART和ADC等等的所有标准外设。对应的C源代码只是用了最基本的C编程的知识,所有代码经过严格测试,易于理解和使用,并且配有完整的文档,非常方便进行二次开发和应用。
3 STM32F10XXX标准外设库结构与文件描述1. 标准外设库的文件结构在上一小节中已经介绍了使用标准外设库的开发的优势,因此对标准外设库的熟悉程度直接影响到程序的编写,下面让我们来认识一下STM32F10XXX的标准外设库。STM32F10XXX的标准外设库经历众多的更新目前已经更新到最新的3.5版本,开发环境中自带的标准外设库为2.0.3版本,本书中以比较稳定而且较新的V3.4版本为基础介绍标准外设库的结构。
可以从ST的官方网站下载到各种版本的标准外设库,首先看一下3.4版本标准外设库的文件结构,如图 5‑3所示。3.0以上版本的文件结构大致相同,每个版本可能略有调整。
图 5‑3 STM32F10XXX V3.4标准外设库文件结构
表 5‑4中介绍了每个文件夹所包含的主要内容。
表 5‑4 STM32F10XXX V3.4标准外设库文件夹描述
STM32F10x_StdPeriph_Lib_V3.4.0
_htmresc
本文件夹包含了所有的html页面资源
Libraries
CMSIS
见表 5‑6
STM32F10x_StdPeriph_Driver
inc
标准外设库驱动头文件
src
标准外设库驱动源文件
Project
Examples
标准外设库驱动的完整例程
Template
MDK-ARM
KEIL RVMDK的项目模板示例
RIDE
Raisonance RIDE的项目模板示例
EWARM
IAR EWARM的项目模板示例
Utilities
STM3210-EVAL
本文件夹包含了用于STM3210B-EVAL和STM3210E-EVAL评估板的专用驱动
标准外设库的第一部分是CMSIS 和STM32F10x_StdPeriph_Driver,CMSIS 是独立于供应商的Cortex-M 处理器系列硬件抽象层,为芯片厂商和中间件供应商提供了简单的处理器软件接口,简化了软件复用工作,降低了Cortex-M 上操作系统的移植难度,并减少了新入门的微控制器开发者的学习曲线和新产品的上市时间。STM32F10x_StdPeriph_Driver则包括了分别对应包括了所有外设对应驱动函数,这些驱动函数均使用C语言编写,并提供了统一的易于调用的函数接口,供开发者使用。Project文件夹中则包括了ST官方的所有例程和基于不同编译器的项目模板,这些例程是学习和使用STM32的重要参考。Utilities包含了相关评估板的示例程序和驱动函数,供使用官方评估板的开发者使用,很多驱动函数同样可以作为学习的重要参考。
STM32F10xxx标准外设库体系结构如图 5‑4所示。图中很好的展示了各层以及具体文件之间的联系,各文件的具体功能说明如表 5‑5所示。
图 5‑4 STM32F10xxx标准外设库体系结构
表 5‑5 文件功能说明
文件名
功能描述
具体功能说明
core_cm3.h
core_cm3.c
Cortex-M3内核及其设备文件
访问Cortex-M3内核及其设备:NVIC,SysTick等
访问Cortex-M3的CPU寄存器和内核外设的函数
stm32f10x.h
微控制器专用头文件
这个文件包含了STM32F10x全系列所有外设寄存器的定义(寄存器的基地址和布局)、位定义、中断向量表、存储空间的地址映射等
system_stm32f10x.h
system_stm32f10x.c
微控制器专用系统文件
函数SystemInit,用来初始化微控制器
函数Sysem_ExtMemCtl,用来配置外部存储器控制器。它位于文件startup_stm32f10x_xx.s /.c,在跳转到main前调用
SystemFrequncy,该值代表系统时钟频率
startup_stm32f10x_Xd.s
编译器启动代码
微控制器专用的中断处理程序列表(与头文件一致)
弱定义(Weak)的中断处理程序默认函数(可以被用户代码覆盖) 该文件是与编译器相关的
stm32f10x_conf.h
固件库配置文件
通过更改包含的外设头文件来选择固件库所使用的外设,在新建程序和进行功能变更之前应当首先修改对应的配置。
stm32f10x_it.h
stm32f10x_it.c
外设中断函数文件
“stm32f10x.h”是整个标准外设库的入口文件,这个文件包含了STM32F10x全系列所有外设寄存器的定义(寄存器的基地址和布局)、位定义、中断向量表、存储空间的地址映射等。为了是这个文件适用于不同系列的产品,程序中是通过宏定义来实现不同产品的匹配的,上面这段程序的注释中已经详细给出了每个启动文件所对应的产品系列,与之对应,也要相应的修改这个入口文件,需要根据所使用的产品系列正确的注释/去掉相应的注释define。在这段程序的下方同样有这样的一个注释程序/*#define USE_STDPERIPH_DRIVER*/ 用于选择是否使用标准外设库,如果保留这个注释,则用户开发程序可以基于直接访问“stm32f10x.h”中定义的外设寄存器,所有的操作均基于寄存器完成,目前不使用固件库的单片机开发,如51、AVR、MSP430等其实都是采用此种方式,通过在对应型号的头文件中进行外设寄存器等方面的定义,从而在程序中对相应的寄存器操作完成相应的功能设计。
如果去掉/*#define USE_STDPERIPH_DRIVER*/的注释,则是使用标准外设库进行开发,用户需要使用在文件“stm32f10x_conf.h”中,选择要用的外设,外设同样是通过注释/去掉注释的方式来选择。示例程序如下:
/* Uncomment the line below to enable peripheral header file inclusion */
#include "stm32f10x_adc.h"
/* #include "stm32f10x_bkp.h" */
/* #include "stm32f10x_can.h" */
/* #include "stm32f10x_cec.h" */
/* #include "stm32f10x_crc.h" */
/* #include "stm32f10x_dac.h" */
/* #include "stm32f10x_dbgmcu.h" */
#include "stm32f10x_dma.h"
/* #include "stm32f10x_exti.h" */
/* #include "stm32f10x_flash.h" */
/* #include "stm32f10x_fsmc.h" */
#include "stm32f10x_gpio.h"
/* #include "stm32f10x_i2c.h" */
/* #include "stm32f10x_iwdg.h" */
/* #include "stm32f10x_pwr.h" */
#include "stm32f10x_rcc.h"
/* #include "stm32f10x_rtc.h" */
/* #include "stm32f10x_sdio.h" */
/* #include "stm32f10x_spi.h" */
/* #include "stm32f10x_tim.h" */
/* #include "stm32f10x_usart.h" */
/* #include "stm32f10x_wwdg.h" */
#include "misc.h" /* High level functions for NVIC and SysTick (add-on to CMSIS functions) */
上面一段程序来自于例程中的AD采集程序,程序使用了AD和DMA,因此去掉相应的注释,同时几乎所有的应用都需要使用复位与时钟以及通用I/O,因此这两项是必须的,
而多数程序同样要使用NVIC中断IRQ设置和SysTick时钟源设置,那么 “misc.h”这一项也是必须的。
上面已经针对具体的产品信号和程序功能进行了针对性的配置,接下来需要配置系统所使用的时钟,系统时钟在“system_stm32f10x.c”同样通过注释的方式来配置,程序如下:
#if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
/* #define SYSCLK_FREQ_HSE HSE_VALUE */
#define SYSCLK_FREQ_24MHz 24000000
#else
/* #define SYSCLK_FREQ_HSE HSE_VALUE */
/* #define SYSCLK_FREQ_24MHz 24000000 */
/* #define SYSCLK_FREQ_36MHz 36000000 */
/* #define SYSCLK_FREQ_48MHz 48000000 */
/* #define SYSCLK_FREQ_56MHz 56000000 */
#define SYSCLK_FREQ_72MHz 72000000
#endif
如果这儿没有明确的定义那么HSI时钟将会作为系统时钟。
至此,已经配置了系统的主要外部参数,这些参数主要是通过更改相关的宏定义来实现的,有些开发环境,例如Keil支持在软件设置中加入全局宏定义,因此像芯片系列定义,是否使用固件库定义等也可以通过软件添加来实现。
完成了主要参数配置以后就可以进行程序的开发了,标准外设库开发就可以使用标准外设库中提供的方便的API函数进行相应的功能设计了。在4.2.2小节中已经介绍了基于标准外设库开发的优势,配置完成后,程序中仍然可以直接更改相应寄存器的配置,通过对寄存器的操作可以提高程序的效率,因此可以使用标准外设库和寄存器操作两种相结合的方式。
全部0条评论
快来发表一下你的评论吧 !