最近看了一些文献,发现其中一些文献标题写着是用增量式PID控制,但是看表达式似乎仍是位置式PID控制。不知是他弄错了,还是我的理解错了,下面根据我的理解比较一下位置式PID与增量式PID控制。
首先看表达式,这里采用离散形式。
位置式PID控制:
增量式PID控制:
从表达式我们可以得出以下结论:
(1)位置式PID控制的输出与整个过去的状态有关,用到了误差的累加值;而增量式PID的输出只与当前拍和前两拍的误差有关,因此位置式PID控制的累积误差相对更大;
(2)增量式PID控制输出的是控制量增量,并无积分作用,因此该方法适用于执行机构带积分部件的对象,如步进电机等,而位置式PID适用于执行机构不带积分部件的对象,如电液伺服阀。
(3)由于增量式PID输出的是控制量增量,如果计算机出现故障,误动作影响较小,而执行机构本身有记忆功能,可仍保持原位,不会严重影响系统的工作,而位置式的输出直接对应对象的输出,因此对系统影响较大。
增量式PID控制算法
当执行机构需要的不是控制量的绝对值,而是控制量的增量(例如去驱动步进电动机)时,需要用PID的“增量算法”。
增量式PID控制算法可以通过(2-4)式推导出。由(2-4)可以得到控制器的第k-1个采样时刻的输出值为:
(2-5)
将(2-4)与(2-5)相减并整理,就可以得到增量式PID控制算法公式为:
(2-6)
其中
由(2-6)可以看出,如果计算机控制系统采用恒定的采样周期T,一旦确定A、B、C,只要使用前后三次测量的偏差值,就可以由(2-6)求出控制量。
增量式PID控制算法与位置式PID算法(2-4)相比,计算量小得多,因此在实际中得到广泛的应用。
位置式PID控制算法也可以通过增量式控制算法推出递推计算公式:
(2-7)
(2-7)就是目前在计算机控制中广泛应用的数字递推PID控制算法。
增量式PID控制算法C51程序
/*====================================================================================================
PID Function
The PID (比例、积分、微分) function is used in mainly
control applications. PIDCalc performs one iteration of the PID
algorithm.
While the PID function works, main is just a dummy program showing
a typical usage.
=====================================================================================================*/
typedef struct PID
{
int SetPoint; //设定目标 Desired Value
long SumError; //误差累计
double Proportion; //比例常数 Proportional Const
double Integral; //积分常数 Integral Const
double Derivative; //微分常数 Derivative Const
int LastError; //Error[-1]
int PrevError; //Error[-2]
} PID;
static PID sPID;
static PID *sptr = &sPID;
/*====================================================================================================
Initialize PID Structure PID参数初始化
=====================================================================================================*/
void IncPIDInit(void)
{
sptr->SumError = 0;
sptr->LastError = 0; //Error[-1]
sptr->PrevError = 0; //Error[-2]
sptr->Proportion = 0; //比例常数 Proportional Const
sptr->Integral = 0; //积分常数Integral Const
sptr->Derivative = 0; //微分常数 Derivative Const
sptr->SetPoint = 0;
}
/*====================================================================================================
增量式PID计算部分
=====================================================================================================*/
int IncPIDCalc(int NextPoint)
{
register int iError, iIncpid; //当前误差
iError = sptr->SetPoint - NextPoint; //增量计算
iIncpid = sptr->Proportion * iError //E[k]项
- sptr->Integral * sptr->LastError //E[k-1]项
+ sptr->Derivative * sptr->PrevError; //E[k-2]项
//存储误差,用于下次计算
sptr->PrevError = sptr->LastError;
sptr->LastError = iError;
//返回增量值
return(iIncpid);
}
位置式PID控制算法
由51单片机组成的数字控制系统控制中,PID控制器是通过PID控制算法实现的。51单片机通过AD对信号进行采集,变成数字信号,再在单片机中通过算法实现PID运算,再通过DA把控制量反馈回控制源。从而实现对系统的伺服控制。
位置式PID控制算法
位置式PID控制算法的简化示意图
上图的传递函数为:
(2-1)
在时域的传递函数表达式
(2-2)
对上式中的微分和积分进行近似
(2-3)
式中n是离散点的个数。
于是传递函数可以简化为:
(2-4)
其中
u(n)——第k个采样时刻的控制;
KP ——比例放大系数;
Ki ——积分放大系数;
Kd ——微分放大系数;
T ——采样周期。
如果采样周期足够小,则(2-4)的近似计算可以获得足够精确的结果,离散控制过程与连续过程十分接近。
(2-4)表示的控制算法直接按(2-1)所给出的PID控制规律定义进行计算的,所以它给出了全部控制量的大小,因此被称为全量式或位置式PID控制算法。
缺点:
1) 由于全量输出,所以每次输出均与过去状态有关,计算时要对e(k)(k=0,1,…n)进行累加,工作量大。
2) 因为计算机输出的u(n)对应的是执行机构的实际位置,如果计算机出现故障,输出u(n)将大幅度变化,会引起执行机构的大幅度变化,有可能因此造成严重的生产事故,这在实际生产中是不允许的。
位置式PID控制算法C51程序
具体的PID参数必须由具体对象通过实验确定。由于单片机的处理速度和ram资源的限制,一般不采用浮点数运算,而将所有参数全部用整数,运算
到最后再除以一个2的N次方数据(相当于移位),作类似定点数运算,可大大提高运算速度,根据控制精度的不同要求,当精度要求很高时,注意保留移位引起的“余数”,做好余数补偿。这个程序只是一般常用pid算法的基本架构,没有包含输入输出处理部分。
=====================================================================================================*/
#include
#include
//C语言中memset函数头文件
/*====================================================================================================
PID Function
The PID (比例、积分、微分) function is used in mainly
control applications. PIDCalc performs one iteration of the PID
algorithm.
While the PID function works, main is just a dummy program showing
a typical usage.
=====================================================================================================*/
typedef struct PID {
double SetPoint;
// 设定目标Desired value
double Proportion; // 比例常数Proportional Const
double Integral;
// 积分常数Integral Const
double Derivative; // 微分常数Derivative Const
double LastError;
// Error[-1]
double PrevError; // Error[-2]
double SumError; // Sums of Errors
} PID;
/*====================================================================================================
PID计算部分
=====================================================================================================*/
double PIDCalc( PID *pp, double NextPoint )
{
double dError, Error;
Error = pp->SetPoint - NextPoint;
// 偏差
pp->SumError += Error;
// 积分
dError = Error - pp->LastError;
// 当前微分
pp->PrevError = pp->LastError;
pp->LastError = Error;
return (pp->Proportion * Error // 比例项
+ pp->Integral * pp->SumError // 积分项
+ pp->Derivative * dError // 微分项
);
}
/*====================================================================================================
Initialize PID Structure PID参数初始化
=====================================================================================================*/
void PIDInit (PID *pp)
{
memset ( pp,0,sizeof(PID));
}
/*====================================================================================================
Main Program 主程序
=====================================================================================================*
double sensor (void) // Dummy Sensor Function
{
return 100.0;
}
void actuator(double rDelta) // Dummy Actuator Function
{}
void main(void)
{
PID sPID; // PID Control Structure
double rOut; // PID Response (Output)
double rIn; // PID Feedback (Input)
PIDInit ( &sPID ); // Initialize Structure
sPID.Proportion = 0.5; // Set PID Coefficients
sPID.Integral = 0.5;
sPID.Derivative = 0.0;
sPID.SetPoint = 100.0; // Set PID Setpoint
for (;;) { // Mock Up of PID Processing
rIn = sensor (); // Read Input
rOut = PIDCalc ( &sPID,rIn ); // Perform PID Interation
actuator ( rOut ); // Effect Needed Changes
}
参考资料:
1)Atmel 8-bit AVR Microcontrollers Application Note:AVR221: Discrete PID controller
2)茶壶 - pid C程序,好东西 - 腾讯博客 – Qzone
3) PID 调节控制做电机速度控制,SUNPLUS凌阳科技