针对主观分配属性项权重的方法忽视了各属性项在身份匹配的应用领域中具有的特殊含义与作用,导致识别准确率低的问题,提出了一种基于信息熵的跨网络用户身份识别算法(IE-MSNUIA)。首先,该算法分析不同属性项的数据类型及物理含义,相应地采用不同的相似度计算方法;然后根据各属性的信息熵值赋予权值,进而充分挖掘各属性的潜在信息;最后融合各个属性进行决策判定账号是否匹配。理论分析和实验结果表明,与机器学习算法和主观赋权算法相比,所提算法的各个性能参数值均有所提升,在不同数据集上的平均准确率可以达到97. 2%,平均召回率达到94.1%,平均综合性能值达到95. 6%,可以准确地识别出用户在不同社交网络中的多个账号身份。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !