双光栅干涉衍射原理解析

电子常识

2640人已加入

描述

  光栅衍射原理

  光栅

  光栅:光栅是结合数码科技与传统印刷的技术,能在特制的胶片上显现不同的特殊效果。在平面上展示栩栩如生的立体世界,电影般的流畅动画片段,匪夷所思的幻变效果。

  光栅是一张由条状透镜组成的薄片,当我们从镜头的一边看过去,将看到在薄片另一面上的一条很细的线条上的图像,而这条线的位置则由观察角度来决定。如果我们将这数幅在不同线条上的图像,对应于每个透镜的宽度,分别按顺序分行排列印刷在光栅薄片的背面上,当我们从不同角度通过透镜观察,将看到不同的图像。

  立体效果

  根据研究,我们人类的眼睛在观察一个三维物体时,由于两眼水平分开在两个不同的位置上,所观察到的物体图像是不同的,它们之间存在着一个像差,由于这个像差的存在,通过人类的大脑,我们可以感到一个三维世界的深度立体变化,这就是所谓的立体视觉原理。 据立体视觉原理,如果我们能够让我们的左右眼分别看到两幅在不同位置拍摄的图像,我们应该可以从这两幅图像感受到一个立体的三维空间。从前面的分析中我们可以知道不同的观察角度将可以看到不同的图像。因如果我们将光栅垂直于两眼放置,由于两眼对光栅的观察角度不同,因而两眼会看到两个不同的图像,从而产生立体感。

  常为了获得更好的立体效果我不单单以两幅图像制作,而是用一组序列的立体图像去构成,在这样的情况下,根据观察的位置不同,只要同时看到这个序列中的两副图像,即可感受到三维立体效果。

  动画\幻变\变画

  将光栅平置于两眼之间,注意两眼对光栅的线纹角度要保持平行,因而两眼看到的是同一个图像,如果图像是由一列连续动画所构成,那么当双眼上下移动或把光栅上下翻动时,双眼与光栅的角度将发生变化,我们也将看到一个接一个的连续图像,即看到一个动画或变画的效果。

  一、何谓光栅板

  就是指有一面被挤压成圆柱形线条 一面为完整平面的塑胶材料,且圆柱形线条间距相等谓之「 光栅 」 此光栅平面可作为印刷之用途,使用光栅视觉软体合成图档后,使用不同输出设备输出档案,并与光栅贴合或直接印刷在光栅板上,就可以呈现如右图所示的效果,让动画可以直接在平面的印刷上呈现出萤幕所看见的变图效果。

  二、 窄角度光栅与宽角度光栅

  在选择适合的光栅板时,光栅弯曲的角度是非常重要的事,一般来说 3 D 立体效果最理想的光栅是使用窄角度光栅板,它的视角大约在15度 ~ 44度之间的效果是最好的,如果要制作变图或动画的效果,宽角度光栅板的视角约44度~ 65度之间是最适合的光栅板。

  三、 市面常用之光栅种类与用途

  在制作各种光栅视觉效果前,必须要先了解光栅的特性、种类、规格、厚度、尺寸、方向性等,才能仔细判别如何制作出精致的光栅影像效果,就***市面上常用之光栅材料做分类,可分为以下几种。

  印刷光栅材质:PET、PP、PVC、TPU等,PET、PP为硬质平板环保材质,PVC、TPU为软质材质。

  印刷光栅线数:50 LPI、60 LPI、62 LPI、75 LPI、100 LPI。

  光栅线数效果:50 LPI------------3D、Flip------------常用材料

  60 LPI------------3D、Flip、Zoom、Twist、Animation

  62 LPI------------3D、Flip、Zoom、Twist、Animation

  75 LPI------------3D、Flip、Zoom、Twist、Animation------------常用材料

  100 LPI-----------3D、Flip------------常用材料

  光栅 设计图折射原理

  利用光栅视觉软体把不同的图案转化成光栅线数,利用光栅折射的原理,在不同的角度呈现出不同的图案,如右图所示,不同规格的光栅会有不同的折射效果与折射角度,观赏距离也会有所不同,所以在设计光栅效果图档的时候,必须先了解光栅才能设计出符合光栅特性的设计图。

  光栅视觉效果图的种类

  光栅效果可以分为以下几种:立体[3D]、两变[Flip]、变大变小[Zoom]、爆炸[Explore]、连续动作[Animation]、扭转[Twist]。。。。等,其实可以更简化分类为:立体[3D]、变图[Flip],在变图中就涵盖所有变化的效果,这些效果可以透过许多市面上的动画软体、绘图软体、网页多媒体软体,产生所需要的分解图档,经由光栅视觉软体将分解图合成为光栅线数即可将平面的效果做成立体[3D]、变图[Flip]的特殊效果。

  3D Effect [立体影像]

  注意事项:

  1、图层必须独立且影像完整。

  2、图档解析度300dpi。

  3、档案格式必须为PSD档。[CMYK、RGB]皆可。

  4、背景图层必须出血至少1CM。

  物理上的光栅原理说明

  光栅也称衍射光栅。是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。光栅的狭缝数量很大,一般每毫米几十至几千条。单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱。光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果。

  光栅衍射 实验原理

  根据夫琅禾费衍射理论,当一束波长为λ的平行光垂直投射到光栅平面时,光波将在每个狭缝处发生衍射,经过所有狭缝衍射的光波又彼此发生干涉,这种由衍射光形成的干涉条纹是定域于无穷远处的。若在光栅后面放置一个汇聚透镜,则在各个方向上的衍射光经过汇聚透镜后都汇聚在它的焦平面上,得到的衍射光的干涉条纹根据光栅衍射理论,衍射光谱中明条纹的位置由下式决定:

  (k=1,2,3,…)(1)或上式称为光栅方程,式中是相邻两狭缝之间的距离,称为光栅常数,λ为入射光的波长,k为明条纹的级数,是k级明条纹的衍射角,在衍射角方向上的光干涉加强,其它方向上的光干涉相消。

  当入射平行光不与光栅平面垂直时,光栅方程应写为

  (k=1,2,3,…)(2)

  式中i是入射光与光栅平面法线的夹角。所以实验中一定要保证入射光垂直入射。

  如果入射光不是单色光,而是包含几种不同波长的光,则由式(1)可以看出,在中央明条纹处(k=0、=0),各单色光的中央明条纹重叠在一起。除零级条纹外,对于其他的同级谱线,因各单色光的波长λ不同,其衍射角也各不相同,于是复色入射光将被分解为单色光,如图1所示。因此,在透镜焦平面上将出现按波长次序排列的单色谱线,称为光栅的衍射光谱。相同k值谱线组成的光谱就称为k级光谱。

  解读光的干涉和衍射。

  光,也叫电磁波,他的表现形式我们通常用正弦曲线来表示,如下图:

  光栅

  光有很多物理参数,其中有一个如从A点到B点的长度我们叫做波长,波长与频率相关,即与光的颜色有关。而光波从A点走到B点,等于走了一个波长的长度,相位刚好也改变了2π,这是最基本的知识应该不用再多做介绍。

  好,接下来进入正题,我们来看看光的干涉是如何发生的。以图1为例,图中黑色和蓝色的电磁波,在空间发生干涉,会发生什么?刚好干涉相消;如果是蓝色和红色的电磁波发生干涉,那么就会形成一个新的幅值更高的正弦波。这里就可以简单推断出2个干涉需要满足的条件:第一、振动方向相同,如果黑色是纸面内上下振动,蓝色如果改成垂直纸面振动,那么它俩毫无关系;第二,频率相同以及相位差恒定,只有满足这2个条件,才能在空间中形成亮暗相间的干涉条纹。

  问题来了!第一个问题,前面提到的黑色和蓝色电磁波发生干涉,刚好干涉相消,从干涉条纹来看是一片黑,即没有任何光强,也就是意味着没有能量了?这是不是违背了能量守恒定律?答案当然是不违背的。其实我们分析的都只是电场分量,而真正光的形式是这样的,能量不仅只有电场,还有磁场的:

  光栅

  现在分为二种情况分析刚才的干涉相消:对向而行和同向而行;

  先分析对向而行,结合图2和图3(传播方向相反),如果要让干涉相消,即电场矢量方向相反,那么我们就会发现磁场分量的振动方向是相同的,所以电场分量干涉相消,其实是把电场的能量全部转移到磁场上去了,所以总能量依旧是守恒的。

  光栅

  接下来分析同向而行的情况,如果你用上面的方式套用的话,你会发现电场矢量干涉相消,磁场也干涉相消,能量真的消失了?不是,原因在什么地方?继续举例子,看图说话:

  光栅

  我们通过光学系统让光产生干涉,发现在右侧半反半透镜的上下2个面总会有一个干涉相消、一个干涉相涨。这里需要说明一点,当光从光疏介质入射到光密介质反射时,会有半波损失,即会改变π相位,从光密介质入射到光疏介质时,相位不发生变化。所以,总结一下,光干涉本质不是光子的直接湮灭,而是能量的再分配!

  光栅

  前面我们讨论了干涉的原理,如图5所示,当2个光源到达像面的距离相差半个波长的偶数倍时,就是亮条纹;如果距离相差半个波长为奇数倍时,为暗条纹。好,接下来我们再来看衍射是如何发生的?中学的时候我们就学过,当光通过小孔的时候,光会发生衍射,而且孔越小,衍射现象越明显。

  光栅

  那么,我们再来看衍射光的理论分析图(图7),衍射光在经过小孔AB后会朝各个方向传播,假设衍射光是平行传播的,那么到达像面的是O点,显而易见,到达这个点的衍射光是没有相位差的,自然是亮条纹。接着增大θ角,显然A点衍射光和B点的衍射光达到像面Q点的光程是不一样的,所以我们用半波带法来分割这个衍射光,即光程差为半个波长为宽度视作一个光源,那么AA1可以看做一个子光源,A1A2可以看做一个子光源,自然这2个光源的相位刚好相反,即干涉相消,所以随着θ角的增大,光程差会发生变化,条纹会亮暗相间。

  接下来回答为什么孔越小,衍射越明显。反一下就是孔越大,衍射现象越不明显。衍射现象明不明显,我们一般是用光的强度来判断。如图7,如果小孔AB可以划分为11个半波带,那么其中10个干涉相消,只剩1个还在,那么这一级应该是亮条纹,能量用面积上来理解就是1/11;如果小孔AB只可划分5个半波带,那么亮条纹能量面积是1/5。所以得出结论:孔越小,衍射越明显。根据这个半波带法,还可以得出另一个结论:当小孔大小不变的情况下,波长越长,被分割的半波带数量越少,自然单个半波带能量面积越大,衍射现象越明显。

  单缝衍射介绍完毕,接下来就轮到多缝衍射了。多缝衍射显然应该是单缝衍射以及干涉的结合体,所以我们就得到了下面这个图:

  光栅

  多缝衍射最经典的例子就是光栅。那我们现在以光纤光栅为例,来看看光纤光栅是怎么工作的以及有什么用途。

  光栅

  图9为光栅干涉衍射原理图,把它代入到光纤中,我们就可以简化成下图:

  光栅

  根据上一期光纤传感中的光传输原理,不仅需要满足全反射条件,而且需要满足一定的相位条件。这个相位条件,也可以根据图9推导出来,即两束光的光程差要是波长的整数倍才能干涉相涨:

  光栅

  由于衍射光0级和1级的光强相对大一点,所以2级以后的衍射光几乎忽略不计。当取k=1时,我们可以得到衍射光的波长与光栅周期d和折射率、角度有关系。显然,如果要1级衍射光能够在光纤中反向传输,那么光线必须和入射光线要平行(光纤中的相位匹配条件)。根据公式想象一下,我们总会有那么个波长的光线满足这个角度后向传输,这个波长我们就叫做布拉格波长,这种反射式的光纤光栅也叫做布拉格光纤光栅。这里需要再说明下,光其实是很神奇的,各个波长的光都会有各自的衍射光,但是由于其他波长的衍射光没有满足光纤传输干涉相涨的条件,所以就不往1级衍射光这个方向走了,全部往0级衍射光方向传输。

  问题又来了,光纤中的光居然可以反向传输,那衍射光一定是反向的吗?不一定,根据上面的公式,在波长一定的情况下,显然光栅周期d和角度θ成反比,所以当光栅周期d足够大的时候,我们发现θ角变成正向传输了,如下图所示。传输原理同上,我们同样会得到这么个波长使得其满足光纤中传输的条件,且这个波长传输的角度不再是在光纤纤芯中全反射,而变成了在包层中全反射,这就是包层模的模式。而包层模式的光会在很短距离内衰减损耗掉,所以在光纤的接收端我们得到了除了这个波长的光信号,于是我们也把这种光纤叫做透射式光纤光栅,亦叫作长周期光纤光栅;而布拉格光纤光栅,即反射式光纤光栅也叫作短周期光纤光栅。

  光栅

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分