认知无线电的定义及原理_认知无线电的关键技术_认知无线电发展现状与趋势

RF/无线

1773人已加入

描述

  认知无线电(Cognitive Radio,CR) 的概念起源于1999年Joseph Mitolo博士的奠基性工作。它可以通过学习、理解等方式,自适应的调整内部的通信机理、实时改变特定的无线操作参数(如功率、载波调制和编码等)等,来适应外部无线环境,自主寻找和使用空闲频谱。它能帮助用户选择最好的、最适合的服务进行无线传输,甚至能够根据现有的或者即将获得的无线资源延迟或主动发起传送。

  一、认知无线电的定义

  1、JosephMitola对认知无线电的定义

  1999年,JosephMitola在他的学术论文 中首先提出了认知无线电的概念,并描述了认知无线电如何通过“无线电知识描述语言(RKRL,RadioKnowledgeRepresentationLanguage)”来提高个人无线业务的灵活性。随后,JosephMitola在他的博士论文中详细探讨了这一理论 。他认为:认知无线电应该充分利用无线个人数字设备和相关的网络在无线电资源和通信方面的智能计算能力来检测用户通信需求,并根据这些需求提供最合适的无线电资源和无线业务。Mitola的认知无线电的定义是对软件无线电的扩展。认知无线电以软件无线电为平台,并使软件无线电智能化。

  2、FCC的认知无线电定义

  JosephMitola定义的认知无线电强调“学习”的能力,认知无线电系统需要考虑通信环境中的每一个可能参数,然后做出决定。相比于JosephMitola的定义,FCC针对频谱有效分配问题对认知无线电做出的定义更能为业界所接受。在2003年12月的一则通告 中,FCC对认知无线电作出如下定义:认知无线电是能够与所处的通信环境进行交互并根据交互结果改变自身传输参数的无线电。

  FCC对认知无线电的这个定义主要是基于频谱资源分配和管理问题提出的。目前无线频谱资源的规划和使用都是由政府制定的,无线通信设备对频谱的使用需要经过政府的许可。而固定的频谱分配政策导致了频谱不能有效利用的问题。比如分配给蜂窝移动通信系统的频带经常超负荷,而共用频带没有充分使用等。而且频段的利用率在不同的时间和空间也有所不同。

  3、其他的认知无线电定义

  除了JosephMitola和FCC外,还有很多学者对认知无线电进行了定义。

  比如,SimonHaykin结合JosephMitola和FCC的观点,对认知无线电做出如下定义 :认知无线电是一个智能无线通信系统,它能感知外界环境,并使用人工智能技术从环境中学习,通过实时改变传输功率、载波频率和调制方式等系统参数,使系统适应外界环境的变化,从而达到很高的频谱利用率和最佳通信性能。

  认知无线电

  二、认知无线电特点

  对环境的感知能力:此特点是CR技术成立的前提,只有在环境感知和检测的基础上,才能使用频谱资源。频谱感知的主要功能是监测一定范围的频段,检测频谱空洞。

  对环境变化的学习能力、自适应性:此特点体现CR技术的智能性,在遇到主用户信号时,能尽快主动退避,在频谱空洞间自如的切换。

  通信质量的高可靠性:要求系统能够实现任何时间任何地点的高度可靠通信,能够准确地判定主用户信号出现的时间、地点、频段[2]等信息,及时调整自身参数,提高通信质量。

  系统功能模块的可重构性:CR设备可根据频谱环境动态编程,也可通过硬件设计,支持不同的收发技术。可以重构的参数包括:工作频率、调制方式、发射功率和通信协议等。

  三、认知无线电原理

  认知无线电原理如图1所示,由图可看出,CR设备对周围环境感知、探测、分析,这种探测和感知是全方位的,应对地形、气象等综合信息也有所了解。由此图也可得出,CR是高智能设备,应包含一个智能收发器。有了足够的人工智能,它就能吸取过去的经验对实际情况进行响应,过去的经验包括对死区、干扰和使用模式等的了解。它的学习能力是使它从概念走向应用的真正原因。

  认知无线电

  图1:认知无线电原理图

  当CR用户发现频谱空洞,使用已授权用户的频谱资源时[3],必须保证它的通信不会影响到已授权用户的通信,一旦该频段被主用户使用,CR有两种应对方式:一是切换到其它空闲频段通信;二是继续使用该频段,改变发射频率或调制方案,避免对主用户的干扰。

  四、认知无线电物理层关键技术

  通用的CR收发机结构如图2所示,结合前文关于CR基本原理的讨论,可以发现,CR物理层的关键技术包括:宽带射频前端技术、频谱感知技术和数据传输技术。

  认知无线电

  4.1 宽带射频前端技术

  为了提供宽带频谱感知能力,CR的射频前端必需能够调谐到大频谱范围内的任意频带。通用的宽带射频前端结构如图3所示,接收的信号通过放大、混频和A/D转换等步骤后送入基带处理,进行频谱感知或数据检测。其中,射频滤波器通过通带滤波选择所需要的频段的接收信号;低噪放大器(LNA)在放大所需信号的同时最小化噪声;锁相环(PLL)、压控振荡器(VCO)和混频器联合控制,将所需要的接收信号转换到基带或者中频处理;信道选择滤波器用于选择所需的信道并抑制邻道干扰;自动增益控制(AGC)维持很宽的动态范围内的输入信号经放大器的输出功率恒定。

  认知无线电

  针对CR应用,宽带射频前端面临的主要难题是射频前端需要在大的动态范围内检测弱信号。为此,需要采样速率高达几吉赫兹的高速A/D转换器,并且要求超过12比特的高分辨率为了降低这一需求,可以考虑通过陷波滤波器滤出强信号,降低信号的动态范围;或采用智能天线技术,通过空域滤波来实现强信号滤出。

  4.2 频谱感知技术

  频谱感知技术是CR应用的基础和前提。现有的频谱感知技术可以按照图4进行分类。单节点感知是指单个CR节点根据本地的无线射频环境进行频谱特性标识;而协同感知则是通过数据融合,基于多个节点的感知结果将进行综合判决。

  单节点感知技术包括匹配滤波、能量检测和周期特性检测3种,其比较如表1所示。由于这些方法各有优缺点,实际应用时通常结合使用。

  认知无线电

  检测算法适用范围优点缺点匹配滤波CR节点知道授权用户信号的信息检测时间短需要先验信息能量检测CR节点不知道授权用户的信号信息实现简单,不需要先验信息受噪声不确定性影响,不能区别信号类型,检测时间长周期特性检测CR用户信号具有周期自相关特性可以区别噪声和信号类型计算复杂度高认知无线电要求频谱感知能够准确地检测出信噪比(SNR)大于某一门限值的授权用户信号,通常这个SNR的门限值是很低的,对于单节点感知来说,要达到这个要求并不容易。

  为此,人们提出协同频谱感知,通过检测节点间的协作达到系统要求的检测门限,从而降低对单个检测节点的要求,降低单个节点的负担。协同频谱感知的另一个优点是可以有效的消除阴影效应的影响。协同感知可以采用集中或者分布式的方式进行。集中式协同感知是指各个感知节点将本地感知结果送到基站(BS)或接入点(AP)统一进行数据融合,做出决策;分布式协同感知则是指个节点间相互交换感知信息,各个节点独自决策。影响协同频谱感知的关键因素除了参与协同的单节点的感知性能外,还包括网络拓扑结构和数据融合方法;另外,在协同频谱感知中,不同感知节点的相关性和单个节点的不可靠性也会对频谱感知的性能产生重要影响。

  随着FCC引入干扰温度模型来测量干扰,也有人提出通过测量干扰温度进行频谱感知,但这种方法通常要求CR节点知道授权用户的位置,目前尚面临很多问题。

  4.3 数据传输技术

  数据传输技术对于CR实现利用空闲频谱进行通信,从而整体上提高频谱利用率的主要目标非常关键。由于CR可用频谱可能位于很宽的频带范围,并且不连续,因此CR数据传输技术必需能够适应可用频谱的这一特性。

  目前,实现频谱自适应CR数据传输有2个基本途径:采用多载波技术或采用基带信号发射波形设计。

  在多载波传输技术中,正交频分复用(OFDM)是最佳候选技术。如图5所示,其基本思想是将可用整个频带划分成OFDM子载波,只利用没有被授权用户占用的子载波传输数据,构成所谓的非连续OFDM(NC-OFDM)。子载波的分配则通过频谱感知和判决的结果,以分配矢量的方式实现。例如,在进行OFDM调制时,可以将已被授权用户占用的子载波置零,从而避免对授权用户产生干扰。同时,考虑到频谱渗漏的问题,还有必要留出足够的保护子载波。同时,由于很多子载波并没有使用,可以通过一些快速傅立叶变换(FFT)修剪算法降低系统实现的复杂度。

  认知无线电

  OFDM技术的重要优点是实现灵活,但也面临同步、信道估计以及高峰平比的问题。为此,也可以通过在时、频或者码域设计特殊的发射波形,生成满足特定频谱形状的发射信号。例如,在频域合成波形的变换域通信系统(TDCS)、设计特殊扩频码片的扰测量法/码分多址(CI/CDMA)技术、以及跳码/码分多址(CH/CDMA)技术等。虽然这些技术不如OFDM实现灵活,但在初始接入、收发双方不知道对方可用频谱特性时仍然有用。

  五、认知无线电发展现状与趋势

  当前,认知无线电技术已经得到了学术界和产业界的广泛关注。很多著名学者和研究机构都投入到认知无线电相关技术的研究中,启动了很多针对认知无线电的重要研究项目。例如:德国Karlsruhe大学的F. K. Jondral教授等提出的频谱池系统、美国加州大学Berkeley分校的R. W. Brodersen教授的研究组开发的COVUS系统、美国Georgia理工学院宽带和无线网络实验室Ian F. Akyildiz教授等人提出OCRA项目、美国军方DARPA的XG项目、欧盟的E2R项目等。在这些项目的推动下,在基本理论、频谱感知、数据传输、网络架构和协议、与现有无线通信系统的融合以及原型开发等领域取得了一些成果。IEEE为此专门组织了两个重要的国际年会IEEE CrownCom和IEEE DySPAN交流这方面的成果,许多重要的国际学术期刊也通过将刊发关于认知无线电的专辑。目前,最引人关注的是IEEE 802.22工作组的工作,该工作组正在制定利用空闲电视频段进行宽带无线接入的技术标准,这是第一个引入认知无线电概念的IEEE技术标准化活动。

  结合上述认知无线电技术的现状,预计认知无线电未来会沿着以下几个方面发展:

  基本理论和相关应用的研究,为大规模应用奠定坚实的基础。比较重要的包括:认知无线电的信息论基础和认知无线电网络相关技术,例如:频谱资源的管理、跨层联合优化等等。

  试验验证系统开发。目前,已经有多个试验验证系统正在开发中,这些系统的开发成功,将为验证认知无线电的基本理论、关键技术提供测试床,推动其大规模应用。

  与现有系统的融合。虽然目前认为认知无线电的应用应该不要求授权用户作任何改变,但如果授权用户和认知无线电用户协同工作,将会便于实现并提高效率。目前,已经有一些研究工作在考虑将认知无线电集成到现有无线通信系统的方法,并取得了一些初步成果。预计未来这方面将会有大量的需求。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分