ofdma技术的基本原理是什么?ofdma优缺点介绍

电子常识

2650人已加入

描述

  OFDMA是OFDM技术的演进,将OFDM和FDMA技术结合。在利用OFDM对信道进行子载波化后,在部分子载波上加载传输数据的传输技术。OFDMA又分为子信道(Subchannel)OFDMA和跳频OFDMA。

  OFDMA基本原理

  多径效应是目前无线系统面临的挑战之一。多径来自发射器和接收器间的反射,反射在不同时刻到达接收器。分离各反射的时间间隔被称为延迟扩展。当延迟扩展与发送的符号时间(Symbol Time)大致相等时,这种干扰有可能引发问题。典型的延迟扩展时长几微秒,与CDMA符号时间接近。OFDMA的符号时间大致在100微秒,因而多径现象的影响不太严重。为缓解多径效应,在每一符号后插入一个约10微秒、称为循环前缀的警戒边带。

  为得到更高数据速率,OFDM系统必须比CDMA系统更有效地利用频宽。每单位赫兹的位数称为频谱效率。采用高阶调制是实现更高效率的方法之一。阶数是指每一子载波发送的位数。例如,在正交振幅调制(QAM)中,每载频发送2位。在16 QAM和64 QAM中,每个子载波分别发送4和6位。在4G系统,因预期会采用64 QAM,所以其频谱效率很高。OFDMA针对多用户通信进行了优化,尤其是蜂窝电话和其它移动设备。

ofdma技术

  它是针对蜂窝电话长期演进(LTE)的最合适调制方案。在这种演变的过程中, OFDMA的名称变为高速正交频分复用分组接入(HSOPA)。OFDMA的变量由WiMAX论坛选为调制方案,后来又根据IEEE针对IEEE 802.16-2004(固话)和802.12e(移动)WiMAX的标准进行了标准化。

  与CDMA(码分多址接入)宽带CDMA及通用移动通信系统(UMTS)这类3G调制方案相比,它的好处在于具有更高的频谱效率和更好的抗衰落性能。对于低数据率用户,它只需要更低的发射功耗,具有恒定而不是随时间变化的更短延迟,以及避免冲突的更简洁方法。

  OFDMA会把副载波的子集分配给各个用户。以关于信道状态的反馈为基础,系统能执行自适应用户到副载波的分配。只要这些副载波分配被迅速地执行,与OFDM相比,快速衰退、窄带同频干扰性能都得到了改进。反过来,这又改进了系统的频谱效率。

  OFDMA将整个频带分割成许多子载波,将频率选择性衰落信道转化为若干平坦衰落子信道,从而能够有效地抵抗无线移动环境中的频率选择性衰落。由于子载波重叠占用频谱,OFDM能够提供较高的频谱利用率和较高的信息传输速率。通过给不同的用户分配不同的子载波,OFDMA提供了天然的多址方式,并且由于占用不同的子载波,用户间满足相互正交,没有小区内干扰(如图1所示)。同时,OFDMA可支持两种子载波分配模式:分布式和集中式。在子载波分布式分配的模式中,可以利用不同子载波的频率选择性衰落的独立性而获得分集增益。

ofdma技术

  此外,因为OFDMA已成为下行链路的主流方案,上行链路如也采用OFDMA,LTE的上下行链路将具有最大的一致性,可以简化终端的设计。

  一个分配了M个子载波的用户的传输信号可表示为:D =[d 0,d 1……d M-1]T,其中,T代表矩阵转置,di是调制信号。

  经过快速傅立叶反变换(IFFT)调制后,信号向量S =F N* T N,M D,其中TN,M代表子载波分配的映射矩阵,其元素是表达子载波的分布式或者集中式分配。F*N是N点IFFT矩阵,*代表共轭转置,并且FN=[f 1T,f 2T……f NT]T

  经过衰落信道和快速傅立叶变换(FFT)信号处理后,频域的接收信号可以作如下表达:R=HTN,M D+n,其中H=diag(Hk),Hk是第k个子载波上的频域响应;n是高斯噪声向量;R=[r(0),r ⑴ ……r (N-1)]T,r (k)是第k个子载波上的接收信号。

  由于OFDM的时域信号是若干平行随机信号之和,因而容易导致高PAPR。基站端的功率限制相对较弱,并且可以采用较为昂贵的功率放大器,所以在下行链路中,高PAPR不会带来太大的问题。然而,在上行链路中,由于用户终端的功率放大器要求低成本,并且电池的容量有限,因而高PAPR会将降低UE的功率利用率,减小上行的有效覆盖。为避免OFDM的上述缺点,必须降低PAPR。

  降低OFDM的PAPR的技术有很多,比如选择性映射、削波和滤波等等。文献[6]中证明了通过削波和滤波,可以将PAPR降低到6 dB以下时,同时对OFDM的性能影响很小,而且带来的复杂度增加也是可以接受的。因此,本文将主要研究不同多址方案的链路级性能的比较。在OFDM中,采用快速傅立叶变换(FFT)将可用带宽分成数学上正交的许多小带宽。而频带的重构是由快速傅立叶反变换(IFFT)完成的。FFT和IFFT都是定义得很完善的算法,当大小为2的整数倍时,可被非常高效地实现。OFDM系统的典型FFT大小是512、1024和2048,而较小的 128和256也是可能的。可支持5、10和20 MHz带宽。该技术的一个优异特性是易于改用其它带宽。即便整个可用带宽改变了,较小的带宽单元也可维持不变。例如:10MHz可分成1,024个小频带;而5MHz可分成512个小频带。这些典型大小为10 kHz的小频带被称为子载波。

  OFDMA技术分类

  1.子信道OFDMA

  子信道OFDMA将整个OFDM系统的带宽分成若干子信道,每个子信道包括若干子载波,分配给一个用户(也可以一个用户占用多个子信道)。

  2.跳频OFDMA

  子信道OFDMA对子信道(用户)的子载波分配相对固定,即某个用户在相当长的时长内使用指定的子载波组(这个时长由频域调度的周期而定)。

  这种OFDMA系统足以实现小区内的多址,但实现小区间多址却有一定的问题。因为如果各小区根据本小区的信道变化情况进行调度,各小区使用的子载波资源难免冲突,随之导致小区间干扰。如果要避免这样的干扰,则需要在相邻小区间进行协调(联合调度),但这种协调可能需要网络层的信令交换的支持,对网络结构的影响较大。一种很好的选择就是采用跳频OFDMA。

ofdma技术

  OFDM优点

  通过把高速率数据流进行串并转换,使得每个子载波上的数据符号持续长度相对增加,从而有效地减少由于无线信道时间弥散所带来地ISI,进而减少了接收机内均衡器地复杂度,有时甚至可以不采用均衡器,而仅仅通过插入循环前缀地方法消除ISI的不利影响。

  OFDM技术可效的抑制无线多径信道的频率选择性衰落。因为OFDM的子载波间隔比较小,一般的都会小于多径信道的相关带宽,这样在一个子载波内,衰落是平坦的。进一步,通过合理的子载波分配方案,可以将衰落特性不同的子载波分配给同一个用户,这样可以获取频率分集增益,从而有效的克服了频率选择性衰落。

  传统的频分多路传输方法是将频带分为若干个不相交的子频带来并行传输数据流,各个子信道之间要保留足够的保护频带。而OFDM系统由于各个子载波之间存在正交性,允许子信道的频谱相互重叠,因此于常规的频分复用系统相比,OFDM系统可以最大限度的利用频谱资源。

  LTE 网规网优基础知识问答汇总 - Made by UNREGISTERED version of Easy CHM各个子信道的正交调制和解调可以分别通过采用IDFT(Inverse Discrete Fourier Transform)和DFT实现,在子载波数很大的系统中,可以通过采用IFFT(Inverse Fast Fourier Transform)和FFT实现,随着大规模集成电路技术和DSP技术的发展,IFFT和FFT都是非常容易实现的。

  无线数据业务一般存在非对称性,即下行链路中的数据传输量大于上行链路中的数据传输量,这就要求物理层支持非对称的高速率数据传输,OFDM系统可以通过使用不同数量的子信道来实现上行和下行链路中不同的传输速率。

  OFDM缺点

  易受频率偏差的影响。由于子信道的频谱相互覆盖,这就对他们之间的正交性提出了严格的要求,无线信道的时变性在传输过程中造成了无线信号频谱偏移,或发射机与接收机本地振荡器之间存在频率偏差,都会使OFDM系统子载波之间的正交性遭到破坏,导致子信道间干扰(ICI,Inter-Channel Interference),这种对频率偏差的敏感性是OFDM系统的主要缺点之一。

  存在较高的峰值平均功率比。多载波系统的输出是多个子信道信号的叠加,因此如果多个信号的相位一致时,所得到的叠加信号的瞬时功率就会远远高于信号的平均功率,导致较大的峰值平均功率比(PAPR,Peak-to-Average power Ratio),这就对发射机内放大器的线性度提出了很高的要求,因此可能带来信号畸变,使信号的频谱发生变化,从而导致各个子信道间的正交性遭到破坏,产生干扰,使系统的性能恶化。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分