nrf24l01收发程序详解

RF/无线

1823人已加入

描述

  nRF24L01驱动程序分享

  nRF24L01的发送程序:

  #include 《reg51.h》

  #define uchar unsigned char

  #define uint unsigned int

  sbit CE = P1^0; // Chip Enable pin signal (output)

  sbit CSN = P1^1; // Slave Select pin, (output to CSN, nRF24L01)

  sbit IRQ = P1^5; // Interrupt signal, from nRF24L01 (input)

  sbit MISO = P1^4; // Master In, Slave Out pin (input)

  sbit MOSI = P1^3; // Serial Clock pin, (output)

  sbit SCK = P1^2; // Master Out, Slave In pin (output)

  // SPI(nRF24L01) commands

  #define READ_REG 0x00 // Define read command to register

  #define WRITE_REG 0x20 // Define write command to register

  #define RD_RX_PLOAD 0x61 // Define RX payload register address

  #define WR_TX_PLOAD 0xA0 // Define TX payload register address

  #define FLUSH_TX 0xE1 // Define flush TX register command

  #define FLUSH_RX 0xE2 // Define flush RX register command

  #define REUSE_TX_PL 0xE3 // Define reuse TX payload register command

  #define NOP 0xFF // Define No Operation, might be used to read status register

  // SPI(nRF24L01) registers(addresses)

  #define CONFIG 0x00 // ‘Config’ register address

  #define EN_AA 0x01 // ‘Enable Auto Acknowledgment’ register address

  #define EN_RXADDR 0x02 // ‘Enabled RX addresses’ register address

  #define SETUP_AW 0x03 // ‘Setup address width’ register address

  #define SETUP_RETR 0x04 // ‘Setup Auto. Retrans’ register address

  #define RF_CH 0x05 // ‘RF channel’ register address

  #define RF_SETUP 0x06 // ‘RF setup’ register address

  #define STATUS 0x07 // ‘Status’ register address

  #define OBSERVE_TX 0x08 // ‘Observe TX’ register address

  #define CD 0x09 // ‘Carrier Detect’ register address

  #define RX_ADDR_P0 0x0A // ‘RX address pipe0’ register address

  #define RX_ADDR_P1 0x0B // ‘RX address pipe1’ register address

  #define RX_ADDR_P2 0x0C // ‘RX address pipe2’ register address

  #define RX_ADDR_P3 0x0D // ‘RX address pipe3’ register address

  #define RX_ADDR_P4 0x0E // ‘RX address pipe4’ register address

  #define RX_ADDR_P5 0x0F // ‘RX address pipe5’ register address

  #define TX_ADDR 0x10 // ‘TX address’ register address

  #define RX_PW_P0 0x11 // ‘RX payload width, pipe0’ register address

  #define RX_PW_P1 0x12 // ‘RX payload width, pipe1’ register address

  #define RX_PW_P2 0x13 // ‘RX payload width, pipe2’ register address

  #define RX_PW_P3 0x14 // ‘RX payload width, pipe3’ register address

  #define RX_PW_P4 0x15 // ‘RX payload width, pipe4’ register address

  #define RX_PW_P5 0x16 // ‘RX payload width, pipe5’ register address

  #define FIFO_STATUS 0x17 // ‘FIFO Status Register’ register address

  #define TX_ADR_WIDTH 5 // 5字节宽度的发送/接收地址

  #define TX_PLOAD_WIDTH 4 // 数据通道有效数据宽度

  uchar code TX_ADDRESS[TX_ADR_WIDTH] = {0x34,0x43,0x10,0x10,0x01}; // 定义一个静态发送地址

  uchar RX_BUF[TX_PLOAD_WIDTH];

  uchar TX_BUF[TX_PLOAD_WIDTH];

  uchar flag;

  uchar DATA = 0x01;

  uchar bdata sta;

  sbit RX_DR = sta^6;

  sbit TX_DS = sta^5;

  sbit MAX_RT = sta^4;

  void init_io(void)

  {

  CE = 0; // 待机

  CSN = 1; // SPI禁止

  SCK = 0; // SPI时钟置低

  IRQ = 1; // 中断复位

  }

  void delay_ms(uchar x)

  {

  uchar i, j;

  i = 0;

  for(i=0; i《x; i++)

  {

  j = 250;

  while(--j);

  j = 250;

  while(--j);

  }

  }

  uchar SPI_RW(uchar byte)

  {

  uchar i;

  for(i=0; i《8; i++) // 循环8次

  {

  MOSI = (byte & 0x80); // byte最高位输出到MOSI

  byte 《《= 1; // 低一位移位到最高位

  SCK = 1; // 拉高SCK,nRF24L01从MOSI读入1位数据,同时从MISO输出1位数据

  byte |= MISO; // 读MISO到byte最低位

  SCK = 0; // SCK置低

  }

  return(byte); // 返回读出的一字节

  }

  uchar SPI_RW_Reg(uchar reg, uchar value)

  {

  uchar status;

  CSN = 0; // CSN置低,开始传输数据

  status = SPI_RW(reg); // 选择寄存器,同时返回状态字

  SPI_RW(value); // 然后写数据到该寄存器

  CSN = 1; // CSN拉高,结束数据传输

  return(status); // 返回状态寄存器

  }

  uchar SPI_Read(uchar reg)

  {

  uchar reg_val;

  CSN = 0; // CSN置低,开始传输数据

  SPI_RW(reg); // 选择寄存器

  reg_val = SPI_RW(0); // 然后从该寄存器读数据

  CSN = 1; // CSN拉高,结束数据传输

  return(reg_val); // 返回寄存器数据

  }

  uchar SPI_Read_Buf(uchar reg, uchar * pBuf, uchar bytes)

  {

  uchar status, i;

  CSN = 0; // CSN置低,开始传输数据

  status = SPI_RW(reg); // 选择寄存器,同时返回状态字

  for(i=0; i《bytes; i++)

  pBuf = SPI_RW(0); // 逐个字节从nRF24L01读出

  CSN = 1; // CSN拉高,结束数据传输

  return(status); // 返回状态寄存器

  }

  uchar SPI_Write_Buf(uchar reg, uchar * pBuf, uchar bytes)

  {

  uchar status, i;

  CSN = 0; // CSN置低,开始传输数据

  status = SPI_RW(reg); // 选择寄存器,同时返回状态字

  for(i=0; i《bytes; i++)

  SPI_RW(pBuf); // 逐个字节写入nRF24L01

  CSN = 1; // CSN拉高,结束数据传输

  return(status); // 返回状态寄存器

  }

  void RX_Mode(void)

  {

  CE = 0;

  SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // 接收设备接收通道0使用和发送设备相同的发送地址

  SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); // 使能接收通道0自动应答

  SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); // 使能接收通道0

  SPI_RW_Reg(WRITE_REG + RF_CH, 40); // 选择射频通道0x40

  SPI_RW_Reg(WRITE_REG + RX_PW_P0, TX_PLOAD_WIDTH); // 接收通道0选择和发送通道相同有效数据宽度

  SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); // 数据传输率1Mbps,发射功率0dBm,低噪声放大器增益

  SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f); // CRC使能,16位CRC校验,上电,接收模式

  CE = 1; // 拉高CE启动接收设备

  }

  void TX_Mode(uchar * BUF)

  {

  CE = 0;

  SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); // 写入发送地址

  SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // 为了应答接收设备,接收通道0地址和发送地址相同

  SPI_Write_Buf(WR_TX_PLOAD, BUF, TX_PLOAD_WIDTH); // 写数据包到TX FIFO

  SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); // 使能接收通道0自动应答

  SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); // 使能接收通道0

  SPI_RW_Reg(WRITE_REG + SETUP_RETR, 0x0a); // 自动重发延时等待250us+86us,自动重发10次

  SPI_RW_Reg(WRITE_REG + RF_CH, 40); // 选择射频通道0x40

  SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); // 数据传输率1Mbps,发射功率0dBm,低噪声放大器增益

  SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e); // CRC使能,16位CRC校验,上电

  CE = 1;

  }

  uchar Check_ACK(bit clear)

  {

  while(IRQ);

  sta = SPI_RW(NOP); // 返回状态寄存器

  if(MAX_RT)

  if(clear) // 是否清除TX FIFO,没有清除在复位MAX_RT中断标志后重发

  SPI_RW(FLUSH_TX);

  SPI_RW_Reg(WRITE_REG + STATUS, sta); // 清除TX_DS或MAX_RT中断标志

  IRQ = 1;

  if(TX_DS)

  return(0x00);

  else

  return(0xff);

  }

  unsigned char nRF24L01_RxPacket(unsigned char* RX_BUF)

  {

  unsigned char revale=0;

  //SetRX_Mode();

  sta=SPI_Read(STATUS); // read register STATUS‘s value

  if(RX_DR) // if receive data ready (RX_DR) interrupt

  {

  CE = 0;

  SPI_Read_Buf(RD_RX_PLOAD,RX_BUF,TX_PLOAD_WIDTH);// read receive payload from RX_FIFO buffer

  revale =1;//we have receive data

  }

  SPI_RW_Reg(WRITE_REG+STATUS,sta);// clear RX_DR or TX_DS or MAX_RT interrupt flag

  return revale;

  }

  void main(void)

  {

  uchar a[5]={0xfe,0xfd,0xfc,0xf0,0x1d};

  uchar i;

  init_io(); // 初始化IO

  // RX_Mode(); // 设置为接收模式

  while(1)

  {

  for(i=0;i《5;i++)

  {

  TX_BUF = a; // 数据送到缓存

  TX_Mode(TX_BUF); // 把nRF24L01设置为发送模式并发送数据

  Check_ACK(1); // 等待发送完毕,清除TX FIFO

  delay_ms(250);

  delay_ms(250);

  // RX_Mode();

  }

  }

  }

  nRF24L01的接收程序:

  #include 《reg51.h》

  #define uchar unsigned char

  #define uint unsigned int

  sbit CE = P0^0; // Chip Enable pin signal (output)

  sbit CSN = P0^1; // Slave Select pin, (output to CSN, nRF24L01)

  sbit IRQ = P0^5; // Interrupt signal, from nRF24L01 (input)

  sbit MISO = P0^4; // Master In, Slave Out pin (input)

  sbit MOSI = P0^3; // Serial Clock pin, (output)

  sbit SCK = P0^2; // Master Out, Slave In pin (output)

  // SPI(nRF24L01) commands

  #define READ_REG 0x00 // Define read command to register

  #define WRITE_REG 0x20 // Define write command to register

  #define RD_RX_PLOAD 0x61 // Define RX payload register address

  #define WR_TX_PLOAD 0xA0 // Define TX payload register address

  #define FLUSH_TX 0xE1 // Define flush TX register command

  #define FLUSH_RX 0xE2 // Define flush RX register command

  #define REUSE_TX_PL 0xE3 // Define reuse TX payload register command

  #define NOP 0xFF // Define No Operation, might be used to read status register

  // SPI(nRF24L01) registers(addresses)

  #define CONFIG 0x00 // ‘Config’ register address

  #define EN_AA 0x01 // ‘Enable Auto Acknowledgment’ register address

  #define EN_RXADDR 0x02 // ‘Enabled RX addresses’ register address

  #define SETUP_AW 0x03 // ‘Setup address width’ register address

  #define SETUP_RETR 0x04 // ‘Setup Auto. Retrans’ register address

  #define RF_CH 0x05 // ‘RF channel’ register address

  #define RF_SETUP 0x06 // ‘RF setup’ register address

  #define STATUS 0x07 // ‘Status’ register address

  #define OBSERVE_TX 0x08 // ‘Observe TX’ register address

  #define CD 0x09 // ‘Carrier Detect’ register address

  #define RX_ADDR_P0 0x0A // ‘RX address pipe0’ register address

  #define RX_ADDR_P1 0x0B // ‘RX address pipe1’ register address

  #define RX_ADDR_P2 0x0C // ‘RX address pipe2’ register address

  #define RX_ADDR_P3 0x0D // ‘RX address pipe3’ register address

  #define RX_ADDR_P4 0x0E // ‘RX address pipe4’ register address

  #define RX_ADDR_P5 0x0F // ‘RX address pipe5’ register address

  #define TX_ADDR 0x10 // ‘TX address’ register address

  #define RX_PW_P0 0x11 // ‘RX payload width, pipe0’ register address

  #define RX_PW_P1 0x12 // ‘RX payload width, pipe1’ register address

  #define RX_PW_P2 0x13 // ‘RX payload width, pipe2’ register address

  #define RX_PW_P3 0x14 // ‘RX payload width, pipe3’ register address

  #define RX_PW_P4 0x15 // ‘RX payload width, pipe4’ register address

  #define RX_PW_P5 0x16 // ‘RX payload width, pipe5’ register address

  #define FIFO_STATUS 0x17 // ‘FIFO Status Register’ register address

  #define TX_ADR_WIDTH 5 // 5字节宽度的发送/接收地址

  #define TX_PLOAD_WIDTH 4 // 数据通道有效数据宽度 因为这个4,导致发送接收的数据缺少第五个!改成5则正常!

  #define LED P1

  uchar code TX_ADDRESS[TX_ADR_WIDTH] = {0x34,0x43,0x10,0x10,0x01}; // 定义一个静态发送地址

  uchar RX_BUF[TX_PLOAD_WIDTH];

  uchar TX_BUF[TX_PLOAD_WIDTH];

  uchar flag;

  uchar DATA = 0x01;

  uchar bdata sta;

  sbit RX_DR = sta^6;

  sbit TX_DS = sta^5;

  sbit MAX_RT = sta^4;

  void init_io(void)

  {

  CE = 0; // 待机

  CSN = 1; // SPI禁止

  SCK = 0; // SPI时钟置低

  IRQ = 1; // 中断复位

  LED = 0xff; // 关闭指示灯

  }

  void delay_ms(uchar x)

  {

  uchar i, j;

  i = 0;

  for(i=0; i《x; i++)

  {

  j = 250;

  while(--j);

  j = 250;

  while(--j);

  }

  }

  uchar SPI_RW(uchar byte)

  {

  uchar i;

  for(i=0; i《8; i++) // 循环8次

  {

  MOSI = (byte & 0x80); // byte最高位输出到MOSI

  byte 《《= 1; // 低一位移位到最高位

  SCK = 1; // 拉高SCK,nRF24L01从MOSI读入1位数据,同时从MISO输出1位数据

  byte |= MISO; // 读MISO到byte最低位

  SCK = 0; // SCK置低

  }

  return(byte); // 返回读出的一字节

  }

  uchar SPI_RW_Reg(uchar reg, uchar value)

  {

  uchar status;

  CSN = 0; // CSN置低,开始传输数据

  status = SPI_RW(reg); // 选择寄存器,同时返回状态字

  SPI_RW(value); // 然后写数据到该寄存器

  CSN = 1; // CSN拉高,结束数据传输

  return(status); // 返回状态寄存器

  }

  uchar SPI_Read(uchar reg)

  {

  uchar reg_val;

  CSN = 0; // CSN置低,开始传输数据

  SPI_RW(reg); // 选择寄存器

  reg_val = SPI_RW(0); // 然后从该寄存器读数据

  CSN = 1; // CSN拉高,结束数据传输

  return(reg_val); // 返回寄存器数据

  }

  uchar SPI_Read_Buf(uchar reg, uchar * pBuf, uchar bytes)

  {

  uchar status, i;

  CSN = 0; // CSN置低,开始传输数据

  status = SPI_RW(reg); // 选择寄存器,同时返回状态字

  for(i=0; i《bytes; i++)

  pBuf = SPI_RW(0); // 逐个字节从nRF24L01读出

  CSN = 1; // CSN拉高,结束数据传输

  return(status); // 返回状态寄存器

  }

  uchar SPI_Write_Buf(uchar reg, uchar * pBuf, uchar bytes)

  {

  uchar status, i;

  CSN = 0; // CSN置低,开始传输数据

  status = SPI_RW(reg); // 选择寄存器,同时返回状态字

  for(i=0; i《bytes; i++)

  SPI_RW(pBuf); // 逐个字节写入nRF24L01

  CSN = 1; // CSN拉高,结束数据传输

  return(status); // 返回状态寄存器

  }

  void RX_Mode(void)

  {

  CE = 0;

  SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // 接收设备接收通道0使用和发送设备相同的发送地址

  SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); // 使能接收通道0自动应答

  SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); // 使能接收通道0

  SPI_RW_Reg(WRITE_REG + RF_CH, 40); // 选择射频通道0x40

  SPI_RW_Reg(WRITE_REG + RX_PW_P0, TX_PLOAD_WIDTH); // 接收通道0选择和发送通道相同有效数据宽度

  SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); // 数据传输率1Mbps,发射功率0dBm,低噪声放大器增益

  SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f); // CRC使能,16位CRC校验,上电,接收模式

  CE = 1; // 拉高CE启动接收设备

  }

  void TX_Mode(uchar * BUF)

  {

  CE = 0;

  SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); // 写入发送地址

  SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // 为了应答接收设备,接收通道0地址和发送地址相同

  SPI_Write_Buf(WR_TX_PLOAD, BUF, TX_PLOAD_WIDTH); // 写数据包到TX FIFO

  SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); // 使能接收通道0自动应答

  SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); // 使能接收通道0

  SPI_RW_Reg(WRITE_REG + SETUP_RETR, 0x0a); // 自动重发延时等待250us+86us,自动重发10次

  SPI_RW_Reg(WRITE_REG + RF_CH, 40); // 选择射频通道0x40

  SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); // 数据传输率1Mbps,发射功率0dBm,低噪声放大器增益

  SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e); // CRC使能,16位CRC校验,上电

  CE = 1;

  }

  uchar Check_ACK(bit clear)

  {

  while(IRQ);

  sta = SPI_RW(NOP); // 返回状态寄存器

  if(MAX_RT)

  if(clear) // 是否清除TX FIFO,没有清除在复位MAX_RT中断标志后重发

  SPI_RW(FLUSH_TX);

  SPI_RW_Reg(WRITE_REG + STATUS, sta); // 清除TX_DS或MAX_RT中断标志

  IRQ = 1;

  if(TX_DS)

  return(0x00);

  else

  return(0xff);

  }

  unsigned char nRF24L01_RxPacket(unsigned char* RX_BUF)

  {

  unsigned char revale=0;

  //SetRX_Mode();

  sta=SPI_Read(STATUS); // read register STATUS‘s value

  if(RX_DR) // if receive data ready (RX_DR) interrupt

  {

  CE = 0;

  SPI_Read_Buf(RD_RX_PLOAD,RX_BUF,TX_PLOAD_WIDTH);// read receive payload from RX_FIFO buffer

  revale =1;//we have receive data

  }

  SPI_RW_Reg(WRITE_REG+STATUS,sta);// clear RX_DR or TX_DS or MAX_RT interrupt flag

  return revale;

  }

  void main(void)

  {

  uchar i;

  uchar reveal;

  init_io(); // 初始化IO

  RX_Mode(); // 设置为接收模式

  while(1)

  {

  reveal=nRF24L01_RxPacket(RX_BUF);

  if(reveal==1) // 接受完成

  {

  reveal = 0;

  for(i=0;i《5;i++)

  {

  LED = RX_BUF;

  delay_ms(250);

  delay_ms(250);

  }

  }

  }

  }

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
评论(0)
发评论
zjlei88 2022-04-24
0 回复 举报
pBuf = SPI_RW(0); // 逐个字节从nRF24L01读出这句编译出错,什么原因呢? 1条回复 收起回复
ImpulseWidth 0
改成pBuf[i]=SPI_RW(0);

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分