电子常识
在2016年2月11日,LIGO科学合作组织和Virgo合作团队宣布他们已经利用高级LIGO探测器,已经首次探测到了来自于双黑洞合并的引力波信号。
虽然科学家们对引力波的研究有史已久,但对引力波的定义并不明确。至少给人两种印象。
1)引力波是从物体内部的质量中辐射出来的波。这种波形成了引力场,引力是通过引力波传递的,从而导致了引力现象的出现。这种波有点像电磁波那样是由波源(物质质量)辐射出来的。这样的波是微观的,频率比较高。从理论上讲,这种引力波的产生需要消耗物体(如星体)内部的能量。
2)引力波是两个巨大天体之间出现的位置上的相对变化所产生出来的。例如一个脉冲双星系中的两个星体互相围绕对方快速旋转,从而产生出星体位置上的周期性变化。这种变化所产生出来的周期性引力场强度上的变化也是引力波。这种引力波是宏观的,频率都很低。从理论上讲,这种引力波的产生并不需要消耗星体内部的能量。它在能量上的表现属于势能。因为这种波是靠距离的变化产生出来的。
北京时间11日晚上的美国自然基金会新闻发布会确认,人类首次直接探测到了引力波,这可谓一件全球轰动性科学事件。
在过去的六十年里,有许多物理学家和天文学家为证明引力波的存在做出了无数努力。其中最著名的要数引力波存在的间接实验证据——脉冲双星PSR1913+16。1974年,美国物理学家家泰勒(Joseph Taylor)和赫尔斯(Russell Hulse)利用射电望远镜,发现了由两颗质量大致与太阳相当的中子星组成的相互旋绕的双星系统。由于两颗中子星的其中一颗是脉冲星,利用它的精确的周期性射电脉冲信号,我们可以无比精准地知道两颗致密星体在绕其质心公转时他们轨道的半长轴以及周期。根据广义相对论,当两个致密星体近距离彼此绕旋时,该体系会产生引力辐射。辐射出的引力波带走能量,所以系统总能量会越来越少,轨道半径和周期也会变短。
泰勒和他的同行在之后的30年时间里面对PSR1913+16做了持续观测,观测结果精确地按广义相对论所预测的那样:周期变化率为每年减少76.5微秒,半长轴每年缩短3.5米。广义相对论甚至还可以预言这个双星系统将在3亿年后合并。这是人类第一次得到引力波存在的间接证据,是对广义相对论引力理论的一项重要验证。泰勒和赫尔斯因此荣获1993年诺贝尔物理学奖。
在实验方面,第一个对直接探测引力波作伟大尝试的人是韦伯(Joseph Weber)。早在上个世纪50年代,他第一个充满远见地认识到,探测引力波并不是没有可能。从1957年到1959年,韦伯全身心投入在引力波探测方案的设计中。最终,韦伯选择了一根长2米,直径0.5米,重约1吨的圆柱形铝棒,其侧面指向引力波到来的方向。该类型探测器,被业内称为共振棒探测器(如下图):
韦伯的共振帮探测器只有2米,强度为10-21的引力波在这个长度上的应变量(2×10-21米)实在太小,对上世纪五六十年代的物理学家来说,探测如此之小的长度变化是几乎不可能的。虽然共振棒探测器没能最后找到引力波,但是韦伯开创了引力波实验科学的先河,在他之后,很多年轻且富有才华的物理学家投身于引力波实验科学中。
在韦伯设计建造共振棒的同时期,有部分物理学家认识到了共振棒的局限性,有一种基于迈克尔逊干涉仪原理的引力波探测方案在那个时代被提出。到了70年代,麻省理工学院的韦斯(Rainer Weiss)以及马里布休斯实验室的佛瓦德(Robert Forward),分别建造了引力波激光干涉仪。到了70年代后期,这些干涉仪已经成为共振棒探测器的重要替代者。
自20世纪90年代起,在世界各地,一些大型激光干涉仪引力波探测器开始筹建,引力波探测黄金时代就此拉开了序幕。
这些引力波探测器包括:位于美国路易斯安那州利文斯顿臂长为4千米的LIGO(L1);位于美国华盛顿州汉福德臂长为的4千米的LIGO(H1);位于意大利比萨附近,臂长为3千米的VIRGO;德国汉诺威臂长为600米的GEO,日本东京国家天文台臂长为300米的TAMA300。这些探测器在2002年至2011年期间共同进行观测,但并未探测到引力波。在经历重大改造升级之后,两个高新LIGO探测器于2015年开始作为灵敏度大幅提升的高新探测器网络中的先行者进行观测,而高新VIRGO也将于2016年年底开始运行。此外,欧洲的空间引力波项目eLISA和日本的地下干涉仪KAGRA 的研发与建设也在紧锣密鼓地进行。
1、这一发现填补了广义相对论实验验证的最后一块缺失的拼图
爱因斯坦1916年发表的广义相对论预言了宇宙诞生之初产生的一种时空波动——原初引力波——的存在。过去近百年中,广义相对论的其他预言如光线的弯曲、水星的近日点进动以及引力红移效应都已获证实,唯有原初引力波因信号极其微弱,技术上很难测量,而一直徘徊在天文学家“视线”之外。剑桥大学博士、加拿大不列颠哥伦比亚大学的“CITA国家研究员”马寅哲认为,原初引力波的发现是支持广义相对论的又一有力证据,相对论所预言的所有实验现象全部被验证,实验与理论符合得都很好。
2、这一发现打开了观测宇宙的一扇新窗户。
在天文学几百年来的发展过程中,人们观测宇宙的主要手段是观测光,也就是说几乎所有天文实验都是在收集光子。而根据标准宇宙大爆炸理论,大爆炸之后约40万年,光子、电子及其他粒子混在一起,宇宙处于晦暗的迷雾状态,光无法穿透。而引力波则不同,它诞生在宇宙大爆炸之初并以光速传播。从事引力波研究多年的美国亚利桑那州立大学理论物理学家劳伦斯·克劳斯认为,引力波被测量到,意味着人们可以通过引力波而一直追溯到大爆炸之后仅仅10的负35方秒的极早时期,同时引力波也可以作为另一种观测宇宙的手段。引力波天文学这门新学科的大门也由此打开。
3、这一发现有助于真正理解宇宙大爆炸原初时刻的物理过程。
根据上世纪80年代逐渐发展起来的暴涨理论,140亿年前,在大爆炸之后不到10的负35方秒的时间里,宇宙以指数速度急剧膨胀,即所谓“暴涨过程”。原初引力波忠实记录了暴涨时期的物理过程。马寅哲告诉记者,现在关于大爆炸原初时刻的理论模型有数百个,但“到底哪个对,还是都不对,在今天之前是不清楚的。但如果(美国科学家的)结果是真的,那么很多理论模型会被排除”。
4、这一发现意味着对宇宙微波背景辐射的测量将会进入下一个重要里程碑。
宇宙微波背景辐射是宇宙大爆炸的“余烬”,是一种弥漫在整个宇宙空间中的微弱电磁波信号。过去几十年中,人们测量微波背景辐射,其实主要测量的是温度场的信息,却一直没有测量到引力波的独特印记——B模式偏振。目前,全球多个小组在探测引力波,新发现无疑将极大鼓舞他们的士气,并促进有关国家进一步加大科研经费和人力资源投入。
马寅哲表示:“此项工作若获证实,当之无愧是诺贝尔奖级的工作。而且在此之后,关于引力波的诺贝尔奖可能还会再出现。宇宙‘暴涨’理论的提出者也可能获奖。”克劳斯也对新华社记者说,新研究还需要进一步验证,但如果获得证实,它“可以跻身过去25年最重要的宇宙学发现之列”并可能获得诺贝尔奖。
1、理论上,促进了人类对宇宙认知革命。
引力波为我们打开了除电磁辐射(光学、红外、射电、X 射线等)、粒子(中微子、宇宙线)之外,一个全新的窗口——我们从未能够以这样的方式观察宇宙。在引力波这个新窗口中,我们不再是以电磁场、物质粒子作为观察宇宙的凭借——我们感受的,是时空本身的颤动!
2、确定了黑洞的存在。
此前,人类将观测到的海量的天体物理现象,用黑洞的存在予以完美解释,但这并不是确定黑洞存在的证据。直到LIGO团队双黑洞并合产生的引力波的发现,给出了黑洞确实存在的空前牢靠的证据。
3、加深了人类对时空弯曲、时间旅行的理解。
人类对时间旅行的猜测,是基于“宇宙弦理论”,而引力波则被认为是宇宙弦释放能量的主要机制。什么是宇宙弦?有理论认为,宇宙早期相变过程中,可能产生极细却具有宇宙学尺度的长度的“宇宙弦”。这些宇宙弦就像耳机线,总有一天会自己打成结。当它们打结时,结点会发生断裂,并以引力波的形式释放出能量。而时空旅行,就是宇宙弦打结能够产生封闭类时间曲线———这样或许就可以实现时间旅行。
4、有助于人类研究恒星爆炸原理
大质量恒星生命终点的时候,可能在一场剧烈的超新星爆炸之后塌缩为黑洞或中子星。但我们现在还不知道,超新星具体是如何点燃的。监听超新星爆炸时的引力波波形,与电磁波段的观测进行对比,可以给我们提供检验现有模型的更多依据。
5、有助于人类探测宇宙的膨胀速度
以前,人类测量宇宙膨胀速度,只有一种标准——Ia 型超新星作为“标准烛光”。如今,引力波为我们提供一个独立的“标准烛光”。通过测量引力波事件的强度,我们能推算出引力波源的距离。如果我们能在电磁波段上找到引力波源所在的星系,就能比较该星系的红移与引力波源距离之间的关系——这样我们就又多了一种测量宇宙膨胀速度的方法。
6、同时,引力波的证实也给科学界带来了新的探索任务:引力波是否是以光速传播?
有波就有对应的粒子。引力波对应假想的引力子。如果引力子像光子一样,没有质量,那也应该以光速传播,这是经典的广义相对论的预言。但是也有人表示,如果引力子有一点质量,也许有助于解释宇宙加速膨胀。而如果引力子有质量的话,它就会以低于光速前进。这样如果我们能分别观测到一次高能事件产生的电磁辐射和引力波,看看它们到达地球有没有时间差,就能知道引力波是否在光子之后抵达地球,也就是引力波是否以光速传播。若是,则再次捍卫爱因斯坦的理论;若不是,则又是一个动摇了物理大厦基础的重要发现。
全部0条评论
快来发表一下你的评论吧 !