嵌入式编程和PC编程需要结合在一起应用于实际的项目

电子说

1.3w人已加入

描述

在中国,嵌入式编程的朋友很少是正儿八经从计算机专业毕业的,都是从自动控制啊,电子相关的专业毕业的。这些童鞋们,实践经验雄厚,但是理论知识缺乏;计算机专业毕业的童鞋很大一部分去弄网游、网页这些独立于操作系统的更高层的应用了。也不太愿意从事嵌入式行业,毕竟这条路不好走。他们理论知识雄厚,但缺乏电路等相关的知识,在嵌入式里学习需要再学习一些具体的知识,比较难走。

能从PC机器编程去看嵌入式问题,那是第一步;学会用嵌入式编程思想,那是第二步;用PC的思想和嵌入式的思想结合在一起,应用于实际的项目,那是第三步。

虽然没有做过产业调查,但从我所见和所招聘人员,从事嵌入式行业的工程师,要么缺乏理论知识,要么缺乏实践经验。很少两者兼备的。究其原因,还是中国的大学教育的问题。这里不探讨这个问题,避免口水战。我想列出我实践中的几个例子。引起大家在嵌入式中做项目时对一些问题的关注。

第一个问题:

同事在uC/OS-II下开发一个串口的驱动程序,驱动和接口在测试中均为发现问题。应用中开发了个通讯程序,串口驱动提供了一个查询驱动缓冲区字符的函数:GetRxBuffCharNum()。 高层需要接受一定数量的字符以后才能对包做解析。一个同事撰写的代码,用伪代码表示如下:

bExit = FALSE;

do {

if (GetRxBuffCharNum() >= 30)

       bExit = ReadRxBuff(buff, GetRxBuffCharNum());

} while (!bExit);

这段代码判断当前缓冲区中超过30个字符,就将缓冲区中全部字符读到缓冲区中,直到读取成功为止。逻辑清楚,思路也清楚。但这段代码是不能正常工作。如果是在PC机上,定然是没有任何问题,工作的异常正常。但在嵌入式里真的是不得而知了。同事很郁闷,不知道为什么。来请我解决问题,当时我看到代码,就问了他,GetRxBuffCharNum()是怎么实现的?打开一看:

unsigned GetRxBuffCharNum(void)

{

cpu_register reg;

unsigned num;

reg = interrupt_disable();

num = gRxBuffCharNum;

interrupt_enable(reg);

return (num);

}

很明显,由于在循环中,interruput_disable()和interrupt_enable()之间是个全局临界区域,保证gRxBufCharNum的完整性。但是,由于在外层的do { } while() 循环中,CPU频繁的关闭中断,打开中断,这个时间非常的短。实际上CPU可能不能正常的响应UART的中断。当然这和uart的波特率、硬件缓冲区的大小还有CPU的速度都有关系。我们使用的波特率非常高,大约有3Mbps。uart起始信号和停止信号占一个比特位。一个字节需要消耗10个周期。3Mbps的波特率大约需要3.3us传输一个字节。3.3us能执行多少个CPU指令呢?100MHz的ARM,大约能执行150条指令左右。结果关闭中断的时间是多长呢?一般ARM关闭中断都需要4条以上的指令,打开又有4条以上的指令。接收uart中断的代码实际上是不止20条指令的。所以,这样下来,就有可能出现丢失通信数据的Bug,体现在系统层面上,就是通信不稳定。

修改这段代码其实很简单,最简单的办法是从高层修改。即:

bExit = FALSE;

do {

DelayUs(20); //延时 20us,一般采用空循环指令实现

num = GetRxBuffCharNum();

if (num >= 30)

    bExit = ReadRxBuff(buff, num);

} while (!bExit);

这样,让CPU有时间去执行中断的代码,从而避免了频繁关闭中断造成的中断代码执行不及时,产生的信息丢失。在嵌入式系统里,大部分的RTOS应用都是不带串口驱动。自己设计代码时,没有充分考虑代码与内核的结合。造成代码深层次的问题。RTOS之所以称为RTOS,就是因为对事件的快速响应;事件快速的响应依赖于CPU对中断的响应速度。驱动在Linux这种系统中都是与内核高度整合,一起运行在内核态。RTOS虽然不能抄袭linux这种结构,但有一定的借鉴意义。

从上面的例子可以看清楚,嵌入式需要开发人员对代码的各个环节需要了解清楚。

第二个例子:

同事驱动一个14094串转并的芯片。串行信号是采用IO模拟的,因为没有专用的硬件。同事就随手写了个驱动,结果调试了3、4天,仍旧是有问题。我实在看不下去了,就去看了看,控制的并行信号有时候正常有时候不正常。我看了看代码,用伪代码大概是:

for (i = 0; i < 8; i++)

{

    SetData((data >> i) & 0x1);

    SetClockHigh();

    for (j = 0; j < 5; j++);

    SetClockLow();

}

将数据的8个bit在每个高电平从bit0到bit7依次发送出去。应该是正常的啊。看不出问题在哪啊?我仔细想了想,有看了14094的datasheet,明白了。原来,14094要求clock的高电平持续10个ns,低电平也要持续10个ns。这段代码之做了高电平时间的延时,没有做低电平的延时。如果中断插在低电平之间工作,那么这段代码是可以的。但是如果CPU没有中断插在低电平时执行,则是不能正常工作的。所以就时好时坏。

修改也比较简单:

for (i = 0; i < 8; i++)

{

    SetData((data >> i) & 0x1);

    SetClockHigh();

    for (j = 0; j < 5; j++);

    SetClockLow();

    for (j = 0; j < 5; j++);

}

这样就完全正常了。但是这个还是不能很好移植的一个代码,因为编译器一优化,就有可能造成这两个延时循环的丢失。丢失了,就不能保证高电平低电平持续10ns的要求,也就不能正常工作了。所以,真正的可以移植的代码,应该把这个循环做成一个纳秒级的DelayNs(10);

像Linux一样,上电时,先测量一下,nop指令执行需要多长时间执行,多少个nop指令执行10ns。执行一定的nop指令就可以了。利用编译器防止优化的编译指令或者特殊的关键字,防止延时循环被编译器优化掉。如GCC中的

__volatile__ __asm__("nop; ");

从这个例子中可以清楚的看到,写好一段好代码,是需要很多知识支撑的。你说呢?


打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
评论(0)
发评论
jjzn123 2022-08-22
0 回复 举报
http://house.china.com.cn/sousou/%25B4%25FA%25C0%25ED%252C%2B%25C3%25E5%25B5%25E9%25C0%25CF%25B0%25D9%25CA%25A4%25BF%25CD%25B7%25FEB2024.cN%252C%25CE%25E0%25D6%25DD%25C8%25CB%25B2%25C5%25CD%25F8_2s.htm http://house.china.com.cn/sousou/%25D6%25B1%25D3%25AA%252C%2B%25B2%25FD%25CA%25A2%25D3%25E9%25C0%25D6%25B3%25C7B2024.cN_23s.htm http://house.china.com.cn/sousou/%25C9%25CF%25B7%25D6%252C%2B%25C3%25E5%25B1%25B1%25C0%25CF%25B0%25D9%25CA%25A4%25C6%25BD%25CC%25A8B2024.cN_1s.htm http://house.china.com.cn/sousou/%25D3%25E9%25C0%25D6%252C%2B%25B5%25CF%25CD%25FE%25D3%25E9%25C0%25D6%25CA%25D6%25BB%25FAappB2024.cN_63s.htm http://house.china.com.cn/sousou/%25C9%25CF%25B7%25D6%252C%2B%25B9%25FB%25B8%25D2%25C1%25FA%25CC%25DA%25BC%25AF%25CD%25C5%25BC%25AF%25CD%25C5B2024.cN_26s.htm 收起回复

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分