人工智能
智能物流就是利用条形码、射频识别技术、传感器、全球定位系统等先进的物联网技术通过信息处理和网络通信技术平台广泛应用于物流业运输、仓储、配送、包装、装卸等基本活动环节,实现货物运输过程的自动化运作和高效率优化管理,提高物流行业的服务水平,降低成本,减少自然资源和社会资源消耗。物联网为物流业将传统物流技术与智能化系统运作管理相结合提供了一个很好的平台,进而能够更好更快地实现智能物流的信息化、智能化、自动化、透明化、系统的运作模式。智能物流在实施的过程中强调的是物流 过程数据智慧化、网络协同化和决策智慧化。智能物流在功能上要实现 6 个“正确”,即正 确的货物、正确的数量、正确的地点、正确的质量、正确的时间、正确的价格,在技术上要实现:物品识别、地点跟踪、物品溯源、物品监控、实时响应。
自动识别技术
自动识别技术是以计算机、光、机、电、通信等技术的发展为基础的一种高度自动化的数据采集技术。它通过应用一定的识别装置,自动地获取被识别物体的相关信息,并提供给后台的处理系统来完成相关后续处理的一种技术。它能够帮助人们快速而又准确地进行海量数据的自动采集和输入,在运输、仓储、配送等方面已得到广泛的应用。经过近30年的发展,自动识别技术已经发展成为由条码识别技术、智能卡识别技术、光字符识别技术、射频识别技术、生物识别技术等组成的综合技术,并正在向集成应用的方向发展。
条码识别技术是目前使用最广泛的自动识别技术,它是利用光电扫描设备识读条码符号,从而实现信息自动录入。条码是由一组按特定规则排列的条、空及对应字符组成的表示一定信息的符号。不同的码制,条码符号的组成规则不同。较常使用的码制有: EAN/ UPC 条码、128 条码、ITF - 14 条码、交插二五条码、三九条码、库德巴条码等。 射频识别(RFID)技术是近几年发展起来的现代自动识别技术,它是利用感应、无线电波或微波技术的读写器设备对射频标签进行非接触式识读,达到对数据自动采集的目的。它可以识别高速运动物体,也可以同时识读多个对象,具有抗恶劣环境、保密性强等特点。
生物识别技术是利用人类自身生理或行为特征进行身份认定的一种技术。生物特征包括手形、指纹、脸形、虹膜、视网膜、脉搏、耳廓等,行为特征包括签字、声音等。由于人体特征具有不可复制的特性,这一技术的安全性较传统意义上的身份验证机制有很大的提高。人们已经发展了虹膜识别技术、视网膜识别技术、面部识别技术、签名识别技术、声音识别技术、指纹识别技术等六种生物识别技术。
数据挖掘技术
数据仓库出现在20 世纪80 年代中期,它是一个面向主题的、集成的、非易失的、时变的数据集合,数据仓库的目标是把来源不同的、结构相异的数据经加工后在数据仓库中存储、提取和维护,它支持全面的、大量的复杂数据的分析处理和高层次的决策支持。数据仓库使用户拥有任意提取数据的自由,而不干扰业务数据库的正常运行。 数据挖掘是从大量的、不完全的、有噪声的、模糊的及随机的实际应用数据中, 挖掘出隐含的、未知的、对决策有潜在价值的知识和规则的过程。一般分为描述型数据挖掘和预测型数据挖掘两种。描述型数据挖掘包括数据总结、聚类及关联分析等,预测型数据挖掘包括分类、回归及时间序列分析等。其目的是通过对数据的统计、分析、综合、归纳和推理, 揭示事件间的相互关系,预测未来的发展趋势,为企业的决策者提供决策依据。
人工智能技术
人工智能就是探索研究用各种机器模拟人类智能的途径,使人类的智能得以物化与延伸的一门学科。它借鉴仿生学思想,用数学语言抽象描述知识,用以模仿生物体系和人类的智能机制,主要的方法有神经网络、进化计算和粒度计算三种。 神经网络:神经网络是在生物神经网络研究的基础上模拟人类的形象直觉思维,根据生物神经元和神经网络的特点,通过简化、归纳,提炼总结出来的一类并行处理网络。
神经网络的主要功能主要有联想记忆、分类聚类和优化计算等。虽然神经网络具有结构复杂、可解释性差、训练时间长等缺点,但由于其对噪声数据的高承受能力和低错误率的优点,以及各种网络训练算法如网络剪枝算法和规则提取算法的不断提出与完善,使得神经网络在数据挖掘中的应用越来越为广大使用者所青睐。 进化计算:进化计算是模拟生物进化理论而发展起来的一种通用的问题求解的方法。因为它来源于自然界的生物进化,所以它具有自然界生物所共有的极强的适应性特点,这使得它能够解决那些难以用传统方法来解决的复杂问题。
它采用了多点并行搜索的方式,通过选择、交叉和变异等进化操作,反复叠代,在个体的适应度值的指导下,使得每代进化的结果都优于上一代,如此逐代进化,直至产生全局最优解或全局近优解。其中最具代表性的就是遗传算法,它是基于自然界的生物遗传进化机理而演化出来的一种自适应优化算法。 粒度计算:早在1990 年,我国着名学者张钹和张铃就进行了关于粒度问题的讨论,并指出“人类智能的一个公认的特点,就是人们能从极不相同的粒度(granulari2ty) 上观察和分析同一问题。人们不仅能在不同粒度的世界上进行问题的求解,而且能够很快地从一个粒度世界跳到另一个粒度世界,往返自如,毫无困难。
这种处理不同粒度世界的能力,正是人类问题求解的强有力的表现”。随后,Zadeh 讨论模糊信息粒度理论时,提出人类认知的三个主要概念,即粒度(包括将全体分解为部分) 、组织(包括从部分集成全体) 和因果(包括因果的关联) ,并进一步提出了粒度计算。他认为,粒度计算是一把大伞,它覆盖了所有有关粒度的理论、方法论、技术和工具的研究。目前主要有模糊集理论、粗糙集理论和商空间理论三种。
GIS技术
GIS是打造智能物流的关键技术与工具,使用GIS可以构建物流一张图,将订单信息、网点信息、送货信息、车辆信息、客户信息等数据都在一张图中进行管理,实现快速智能分单、网点合理布局、送货路线合理规划、包裹监控与管理。
GIS技术可以帮助物流企业实现基于地图的服务,比如:
1、网点标注:将物流企业的网点及网点信息(如地址、电话、提送货等信息)标注到地图上,便于用户和企业管理者快速查询。
2、片区划分:从“地理空间”的角度管理大数据,为物流业务系统提供业务区划管理基础服务,如划分物流分单责任区等,并与网点进行关联。
3、快速分单:使用GIS地址匹配技术,搜索定位区划单元,将地址快速分派到区域及网点。并根据该物流区划单元的属性找到责任人以实现“最后一公里”配送。
4、车辆监控管理系统,从货物出库到到达客户手中全程监控,减少货物丢失;合理调度车辆,提高车辆利用率;各种报警设置,保证货物司机车辆安全,节省企业资源。
5、物流配送路线规划辅助系统用于辅助物流配送规划。合理规划路线,保证货物快速到达,节省企业资源,提高用户满意度。
6、数据统计与服务,将物流企业的数据信息在地图上可视化直观显示,通过科学的业务模型、GIS专业算法和空间挖掘分析,洞察通过其他方式无法了解的趋势和内在关系,从而为企业的各种商业行为,如制定市场营销策略、规划物流路线、合理选址分析、分析预测发展趋势等构建良好的基础,使商业决策系统更加智能和精准,从而帮助物流企业获取更大的市场契机。
1、配载技术(装载、路线优化)
配载技术是在完成一个或者多个运作目标的前提下,将时间、成本、资源、效率、环境约束集中整合优化,实现现代物流管理低成本高效率的关键技术,是物流运营计划与实际运营之间的有效结合的关键。
2、配载线路优化技术
集货线路优化、货物配装及送货线路优化等,是配送系统优化的关键。
3、装卸技术
传统的定义,装卸技术是指在同一地域范围内进行的、以改变物的存放状态和空间位置为主要内容和目的的活动,具体说包括装上、卸下、移送、捡选、分类、堆垛、入库、出库等活动。
4、包装技术
包装技术包括包装工艺、包装材料、包装设计、包装测试、包装测试等,在物流中包装技术的运用与包装工艺、包装材料、包装设计有着密切的相关性。
5、MilkRun运作技术
MILKRUN循环取货是由一家(或几家)运输承包商根据预先设计的取货路线,按次序到供应商A、B、C取货,然后直接输送到工厂或零件再分配中心。
6、过程控制技术
现代物流已趋向商流和信息流的一体化的趋势,通过构建现代化物流中心、信息处理中心这一全新的现代物流体系,使商流、物流和信息流在物流信息系统的支持下实现互动,从而能提供准确和及时的物流服务。现代物流的发展是以信息技术的广泛应用为主要特征的。
7、条码与自动识别技术
条码(barcode)是由一组按一定编码规则排列的条、空符号,用以表示一定的字符、数字及符号组成的信息。条码系统是由条码符号设计、制作及扫描阅读组成的自动识别系统。
8、物流自动化技术
物流作业自动化是提高物流效率的一个重要途径和手段,也是物流产业发展的一个重要趋势。
9、POS系统与物流EDI技术
POS(PointOfSale)系统即销售时点信息系统,就是销售的动态数据要及时的传送到生产、采购、供应环节,POS机通过收银机自动读取数据,实现整个供应链即时数据的共享,在收银台的作业效率可以大大提高,顾客的满意度也就提高了。
10、GIS技术、GPS技术
GIS地理信息系统是以地理空间数据库为基础,在计算机软硬件的支持下,运用系统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供管理、决策等所需信息的技术系统。简单的说,地理信息系统就是综合处理和分析地理空间数据的一种技术系统。
全部0条评论
快来发表一下你的评论吧 !