×

基于标签传播的社交网络的社区发现模型

消耗积分:1 | 格式:rar | 大小:0.76 MB | 2018-01-04

分享资料个

  针对基于标签传播的复杂网络重叠社区发现算法中预先输入参数在真实网络中的局限性以及标签冗余等问题,提出一种基于标签传播的面向大规模学术社交网络的社区发现模型。该模型通过寻找网络中互不相交的最大极大团(UMC)并对每个UMC中的节点赋予唯一标签来减少冗余标签,提高社区发现的效率以及稳定性。标签更新时以UMC作为核心单位采用亲密度的方式由中心向四周更新UMC邻接节点的标签及权重,以权重最大值的方式更新网络中非UMC邻接节点的权重。后期处理阶段采用自适应阈值方式去除节点标签中的噪声,有效克服了预先输入重叠社区个数在真实网络中的局限性。通过在学术社交网络平台——学者网数据集上的实验表明,该模型能够将具有一定共性的节点划分到同一个社区中,并为学术社交网络平台进一步的好友推荐、论文分享等精确的个性化服务提供了支持。

基于标签传播的社交网络的社区发现模型

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !