一文读懂三轴陀螺仪工作原理和应用

MEMS/传感技术

1292人已加入

描述

Iphone 4手机采用了意法半导体的MEMS(微电机系统)陀螺仪芯片,芯片内部包含有一块微型磁性体,可以在手机进行旋转运动时产生的科里奥力作用下向X,Y,Z三个方向发生位移,利用这个原理便可以测出手机的运动方向。而芯片核心中的另外一部分则可以将有关的传感

一、三轴陀螺仪工作原理

三轴陀螺仪:同时测定6个方向的位置,移动轨迹,加速。 单轴的只能测量一个方向的量,也就是一个系统需要三个陀螺仪,而3轴的一个就能替代三个单轴的。3轴的体积小、重量轻、结构简单、可靠性好,是激光陀螺的发展趋势。

iPhone

图1 三轴陀螺仪原理

在最新款的iPhone 4手机中内置三轴陀螺仪,它可以与加速器和指南针一起工作,可以实现6轴方向感应,三轴陀螺仪更多的用途会体现在GPS和游戏效果上。一般来说,使用三轴陀螺仪后,导航软件就可以加入精准的速度显示,对于现有的GPS导航来说是个强大的冲击,同时游戏方面的重力感应特性更加强悍和直观,游戏效果将大大提升。这个功能可以让手机在进入隧道丢失GPS信号的时候,凭借陀螺仪感知的加速度方向和大小继续为用户导航。而三轴陀螺仪将会与iPhone原有的距离感应器、光线感应器、方向感应器结合起来让iPhone 4的人机交互功能达到了一个新的高度。

二、三轴陀螺仪的应用

在工程上,陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年美国Utah大学的Vali和Shorthill提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。

现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。

2010年,苹果公司创新性地在新产品iPhone 4 中置入“三轴陀螺仪”,让iPhone的方向感应变得更加智能,从此手机也有了像飞机一样的“感应”,能够知道自己“处在什么样的位置”。

三、iphone手机中的三轴陀螺仪

陀螺仪是用于测量或维持方向的设备,基于角动量守恒原理。这句话的要点是测量或维持方向,这是iPhone 4为何搭载此类设备的原因。iPhone 4采用了微型的,电子化的振动陀螺仪,也叫微机电陀螺仪。iPhone 4是世界上第一台内置MEMS(微机电系统)三轴陀螺仪的手机,可以感知来自六个方向的运动,加速度,角度变化。

Iphone 4手机采用了意法半导体的MEMS(微电机系统)陀螺仪芯片,芯片内部包含有一块微型磁性体,可以在手机进行旋转运动时产生的科里奥力作用下向X,Y,Z三个方向发生位移,利用这个原理便可以测出手机的运动方向。而芯片核心中的另外一部分则可以将有关的传感数据转换为iPhone4可以识别的数字格式。

图2 苹果手机的三轴陀螺仪芯片

微机电系统(MEMS)是一种嵌入式系统,在极小的空间内集成了电子和机械构件。一个基本的 MEMS设备由专用集成电路(ASIC)和微机械硅传感器组成。当用户旋转手机,在科里奥利力(Coriolis force)的作用下,在 X,Y 及 Z 轴产生偏移。专用集成电路处理器感知到待验质量通过其下电容器板和位于边缘的指电容的偏移。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分