OpenCV 图像清晰度评价(相机自动对焦)

编程实验

72人已加入

描述

  前言

  相机的自动对焦要求相机根据拍摄环境和场景的变化,通过相机内部的微型驱动马达,自动调节相机镜头和CCD之间的距离,保证像平面正好投影到CCD的成像表面上。这时候物体的成像比较清晰,图像细节信息丰富。相机自动对焦的过程,其实就是对成像清晰度评价的过程,对焦不准确,拍摄出来的图像清晰度低,视觉效果模糊,如果是在工业检测测量领域,对焦不准导致的后果可能是致命的;对焦准确的图像清晰度较高,层次鲜明,对比度高。

  图像清晰度评价算法有很多种,在空域中,主要思路是考察图像的领域对比度,即相邻像素间的灰度特征的梯度差;在频域中,主要思路是考察图像的频率分量,对焦清晰的图像高频分量较多,对焦模糊的图像低频分量较多。

  这里实现3种清晰度评价方法,分别是Tenengrad梯度方法、Laplacian梯度方法和方差方法。

  Tenengrad梯度方法

  Tenengrad梯度方法利用Sobel算子分别计算水平和垂直方向的梯度,同一场景下梯度值越高,图像越清晰。以下是具体实现,这里衡量的指标是经过Sobel算子处理后的图像的平均灰度值,值越大,代表图像越清晰。

  #include 《highgui/highgui.hpp》

  #include 《imgproc/imgproc.hpp》

  using namespace std;

  using namespace cv;

  int main()

  {

  Mat imageSource = imread(“2.jpg”);

  Mat imageGrey;

  cvtColor(imageSource, imageGrey, CV_RGB2GRAY);

  Mat imageSobel;

  Sobel(imageGrey, imageSobel, CV_16U, 1, 1);

  //图像的平均灰度

  double meanValue = 0.0;

  meanValue = mean(imageSobel)[0];

  //double to string

  stringstream meanValueStream;

  string meanValueString;

  meanValueStream 《《 meanValue;

  meanValueStream 》》 meanValueString;

  meanValueString = “Articulation(Sobel Method): ” + meanValueString;

  putText(imageSource, meanValueString, Point(20, 50), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar(255, 255, 25), 2);

  imshow(“Articulation”, imageSource);

  waitKey();

  }

  使用三张测试图片模拟不同对焦。第一张最清晰,得分最高,第二三张越来越模糊,得分依次降低。

  
     
    

  Laplacian梯度方法:

  Laplacian梯度是另一种求图像梯度的方法,在上例的OpenCV代码中直接替换Sobel算子即可。

  #include 《highgui/highgui.hpp》

  #include 《imgproc/imgproc.hpp》

  using namespace std;

  using namespace cv;

  int main()

  {

  Mat imageSource = imread(“1.jpg”);

  Mat imageGrey;

  cvtColor(imageSource, imageGrey, CV_RGB2GRAY);

  Mat imageSobel;

  Laplacian(imageGrey, imageSobel, CV_16U);

  //Sobel(imageGrey, imageSobel, CV_16U, 1, 1);

  //图像的平均灰度

  double meanValue = 0.0;

  meanValue = mean(imageSobel)[0];

  //double to string

  stringstream meanValueStream;

  string meanValueString;

  meanValueStream 《《 meanValue;

  meanValueStream 》》 meanValueString;

  meanValueString = “Articulation(Laplacian Method): ” + meanValueString;

  putText(imageSource, meanValueString, Point(20, 50), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar(255, 255, 25), 2);

  imshow(“Articulation”, imageSource);

  waitKey();

  }

  用同样的三张测试图片测试,结果一致,随着对焦模糊得分降低:

  


  方差方法:

  方差是概率论中用来考察一组离散数据和其期望(即数据的均值)之间的离散(偏离)成都的度量方法。方差较大,表示这一组数据之间的偏差就较大,组内的数据有的较大,有的较小,分布不均衡;方差较小,表示这一组数据之间的偏差较小,组内的数据之间分布平均,大小相近。

  对焦清晰的图像相比对焦模糊的图像,它的数据之间的灰度差异应该更大,即它的方差应该较大,可以通过图像灰度数据的方差来衡量图像的清晰度,方差越大,表示清晰度越好。

  #include 《highgui/highgui.hpp》

  #include 《imgproc/imgproc.hpp》

  using namespace std;

  using namespace cv;

  int main()

  {

  Mat imageSource = imread(“2.jpg”);

  Mat imageGrey;

  cvtColor(imageSource, imageGrey, CV_RGB2GRAY);

  Mat meanValueImage;

  Mat meanStdValueImage;

  //求灰度图像的标准差

  meanStdDev(imageGrey, meanValueImage, meanStdValueImage);

  double meanValue = 0.0;

  meanValue = meanStdValueImage.at《double》(0, 0);

  //double to string

  stringstream meanValueStream;

  string meanValueString;

  meanValueStream 《《 meanValue*meanValue;

  meanValueStream 》》 meanValueString;

  meanValueString = “Articulation(Variance Method): ” + meanValueString;

  putText(imageSource, meanValueString, Point(20, 50), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar(255, 255, 25), 2);

  imshow(“Articulation”, imageSource);

  waitKey();

  }

  方差数值随着清晰度的降低逐渐降低:

 

  在工业应用中,最清晰的对焦拍摄出来的图像不一定是最好的,有可能出现摩尔纹(水波纹)现象,一般需要在最清晰对焦位置附件做一个微调。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分