超级电容电池应用前景分析

电池

105人已加入

描述

超级电容器在新能源领域并不是一个陌生的名词。实际上,超级电容器已在该领域历经了几十年的坎坷,虽然它的应用形式同电池不同,但在实际应用上却总被电池取代,此外还面临成本高、技术难度大的劣势。然而,超级电容器在技术上一旦取得突破,将可对新能源产业的发展产生极大的推动力。因此,尽管研发过程困难重重,但攻克它的意义却很重大。

超级电容器的尴尬现状

超级电容器从诞生到现在,已经历了三十多年的发展历程。目前,微型超级电容器在小型机械设备上得到广泛应用,例如电脑内存系统、照相机、音频设备和间歇性用电的辅助设施。而大尺寸的柱状超级电容器则多被用于汽车领域和自然能源采集上,并可预见在该两大领域的未来市场上,超级电容器有着巨大的发展潜力。

使用寿命久、环境适应力强、高充放电效率、高能量密度,这是超级电容器的四大显著特点,这也使它成为当今世界最值得研究的课题之一。目前,超级电容器的主要研究国为中、日、韩、法、德、加、美。从制造规模和技术水平来看,亚洲暂时领先。

然而,超级电容器的研发工作一直笼罩在电池(主要为镍氢电池、锂电池)的阴影之下。镍氢电池和锂电池的开发因为可以获得来自政府和大投资商的巨额资金支持,技术交流获得极大推动,也更容易聚焦全世界的目光。相比之下,超级电容器却很难得到雄厚的资金支持,技术的进步和发展也就受到很大程度地制约。这使它在很多领域备受冷落。

超级电容与电池拉平差距的机会

尽管超级电容器的制作成本每年都在以低于10%的比例减少,但这项技术依然不能在运输行业和自然能源采集方面扩大生产规模。相比电池领域,超级电容器的技术过于落后,想要缩小两者在研发方面的差距,首要任务应解决如下问题:

■增加超级电容器生产厂商数量,通过市场竞争的手段刺激相关技术的研发;

■扩大高比功率超级电容器的生产规模,实现突破百万件的年生产量;

■将超级电容器当前的制造成本降低50%;

■拟定一个超级电容器可持续发展战略,主要针对更高效电极材料的探索。

要达到上述目标需要厂商对超级电容器市场有一个逐年上升的投资力度,主要用于在设备的研发和生产两方面。与此同时,政府扩大资金和技术支持也将起到至关重要的作用。

超级电容的应用前景分析

超级电容是一种极好的电池!今后,储能密度还可以再提高10-100倍!

目前,普通电池的储能密度是0.02千瓦时/kg,而超级电容则可以达到10或者20千瓦时/kg,是普通铅蓄电池的500-1000倍!未来还可以进一步提高!而且充放电的速度极快,只需要几秒钟即可!

以前,一块铅蓄电池50公斤,也只能存储一度电,而且用久了就坏了,充放电时间特别长。

现在,一块超级电容电池,如果还是50公斤,则可以储存500-1000度电,足可以供一般的小汽车跑5000公里了!即使是公交车,也可以跑将近2000公里了!如果按按现在汽车的标配,加一次油跑600公里计算,每100公里按标准电耗15度计算,能够储存100度电就可以了,那么就只需要5-10公斤的超级电容电池就可以了!那么,这样一来,车子就已经可以很好地使用了!

未来,将进一步发明石墨烯超级电容电池,容量将进一步扩大十倍!那今后就更好了!

总之,从现在的技术来看,已经可以具有商业化电动汽车的开发价值了!预计一台汽车上安装可持续跑600公里的超级电池,只需要成本1-2万元左右,充电将更加简单快速,几秒钟即可完成,无污染,几乎可以终身使用而无需中途更换。今后还将更好,完全可以使用起来!而且,还有一个优点,可以利用刹车的能量发电转换成电能储存起来,利用风能和太阳能发电储存起来,那将更加节能,而且刹车液更加安全可靠。

总之,未来电动汽车必将横空出世,自己完全可以利用这种技术去发展自己的产业,为中国赢得世界一席之地!

既然电池技术已经攻克,那么就应该进一步去完善,去制造,最终向用户兜售自己的电动汽车!那么,就可以做成一个十分巨大的电动汽车产业,为中国获得绿色环保发展!可以彻底消灭城市汽车尾气污染,可以为中国减少数亿吨的汽油柴油消耗,减少对中东石油的依赖!为中国经济发展带来腾飞的翅膀!

应该继续关注这种技术,这种产业,适时切入!还有,就是石墨烯产业,信息化改造产业,新型计算机产业,智能化软件产业,现代农业,钛合金产业,传统工业的升级改造和技术更新等等,这些将是中国未来发展的根本!

超级电容器的可预见性未来

毋庸置疑,超级电容器凭借自身使用寿命久、高充放电效率等显著特点,只要找准自身发展的合适土壤,未来发展潜力巨大。

就未来十年的发展而言,超级电容器将是运输行业和自然能源采集的重要组成部分,其中,用于装配在启停系统车辆的超级电容器,将成为其在未来的主要销售渠道,预计在2016年的全球市场将达到2.7亿美元,2020年将超过3.5亿美元。

超级电容在电动车中应用研究及发展趋势分析

超级电容一蓄电池复合电源系统综合了超级电容和蓄电池的优点,不仅可以改善电动车的瞬时功率特性,而且可以避免蓄电池大电流放电,延长蓄电池的使用寿命,增加电动车的续驶里程,因此将是超级电容应用于电动车领域的重要发展方向,并具有广阔的市场前景。

由于环境污染和石油危机的双重压力,电动车已经逐渐成为人们生活中一种重要的绿色交通工具。电源是电动车的能量源泉,但目前电池技术还不能完全满足电动车的要求。

超级电容是一种介于电池和静电电容器之间的储能元件,具有比静电电容器高得多的能量密度和比电池高得多的功率密度,不仅适合于作短时间的功率输出源,而且还可利用它比功率高、比能量大、一次储能多等优点,在电动车启动、加速和爬坡时有效地改善运动特性。此外,超级电容还具有内阻小,充放电效率高(90%以上)、循环寿命长(几万至十万次)、无污染等独特的优点,和其他能量元件(发动机、蓄电池、燃料电池等)组成联合体共同工作,是实现能量回收利用、降低污染的有效途径,可以大大提高电动车一次充电的续驶里程。因此,超级电容在电动车领域有着广阔的应用前景,将是未来电动车发展的重要方向之一。

目前,日本、美国、瑞士、俄罗斯等国家都在加紧超级电容的开发,并研究超级电容在电动车驱动和制动系统中的应用,而我国超级电容的生产和应用还处于起步阶段。

超级电容电池

1、超级电容的机理与特点

超级电容(Ultracapacitor)是近期发展起来的一种新型储能元件,是一种具有超级储电能力、可提供强大脉动功率的物理二次电源,它与常规电容器不同,其容量可达数万法。超级电容按储能机理主要分为三类:①由碳电极和电解液界面上电荷分离产生的双电层电容;②采用金属氧化物作为电极,在电极表面和体相发生氧化还原反应而产生可逆化学吸附的法拉第电容;③由导电聚合物作为电极而发生氧化还原反应的电容。

由于双电层电容的充放电纯属于物理过程,其循环次数高,充电过程快,因此比较适合在电动车中应用。双电层超级电容是靠极化电解液来储存电能的一种新型储能装置,其原理结构如图l所示。当向电极充电时,处于理想化电极状态的电极表面电荷将吸引周围电解质溶液中的异性离子,使这些离子附于电极表面形成双电荷层,构成双电层电容。由于超级电容与传统电容相比,储存电荷的面积大得多,电荷被隔离的距离小得多,因此一个超级电容单元的电容量就高达几法至数万法。由于采用了特殊的工艺,超级电容的等效电阻很低,电容量大且内阻小。使得超级电容可以有很高的尖峰电流,因此具有很高的比功率,高达蓄电池的50~100倍,可达到10kW/kg左右,这个特点使超级电容非常适合于短时大功率的应用场合。

超级电容具有极其优良的充、放电性能,在额定电压范围内,可以以极快的速度充电至任一电压值,放电时则可以放出所存储的全部电能,而且没有蓄电池快速充电和放电的损坏问题。此外,超级电容还具有不污染环境及机械强度高、安全性好(防火、防爆)、使用过程中免维护、使用寿命长(大于10年)和工作温度范围宽(一30℃~ 45℃)等优点,并且在瞬间高电压和短路大电流情况下有缓冲功能,能量系统较为稳定。超级电容与铅酸电池和普通电容的性能对比见表1。

2、应用研究现状

超级电容电池

国内外的应用研究进展

由于超级电容的优越性能和近年来对超级电容开发能力的提高,因此超级电容在工业领域中得到了广泛应用。目前,世界各国争相研究、并越来越多地将其应用到电动车上。超级电容已经成为电动车电源发展的新趋势,而超级电容与蓄电池组成的复合电源系统被认为是解决未来电动车动力问题的最佳途径之一。

日本的情况

日本本是将超级电容应用于混合动力电动汽车的先驱,超级电容是近年来日本电动车动力系统开发中的重要领域之一。本田的FCX燃料电池一超级电容混合动力车是世界上最早实现商品化的燃料电池轿车,该车已于2002年在日本和美国的加州上市。日产公司于2002年6月24日生产了安装有柴油机、电动机和超级电容的并联混合动力卡车,此外还推出了天然气一超级电容混合动力客车,该车的经济性是原来传统天然气汽车的2.4倍。目前,装备超级电容的混合动力电动公交车已经成为日本的国家攻关项目。

欧美的状况

瑞士的PSI研究所给一辆48kW的燃料电池车安装了储能360Wh的超级电容组,超级电容承担了驱动系统在减速和起动时的全部瞬态功率,以50kW的15s额定脉冲功率来协助燃料电池工作,牵引电机额定连续功率为45kW,峰值功率为75kW,采用360V的直流电源。大众Bora实验车进行的燃油消耗测试结果表明其油耗少于7L/100km,而相同质量的BMW7系列油耗则为10.7L/100km。1996年俄罗斯的Eltran公司研制出以超级电容作电源的电动汽车,采用300个电容串联,充电一次可行驶12km,时速为25km/h。美国在超级电容混合动力汽车方面的研究也取得了一定进展,Maxwell公司所开发的超级电容器在各种类型电动汽车上都得到了良好的应用。美国NASALewis研究中心研制的混合动力客车采用超级电容作为主要的能量存储系统。

中国的现状

目前,国内对以超级电容作为惟一能源的电动汽车的研究取得了一定的进展,2004年7月我国首部“电容蓄能变频驱动式无轨电车”在上海张江投入试运行,该公交车利用超级电容比功率大和公共交通定点停车的特点,当电车停靠站时在30s内快速充电,充电后就可持续提供电能,时速可达44km/h。2005年1月上海交通大学与山东烟台市签署协议,共同投资开发超级电容公交电车,计划在烟台福山区建一条12km的示范线,在福山高新技术产业区建立年产1万辆新型环保超级电容公交车的生产基地。哈尔滨工业大学和巨容集团研制的超级电容电动公交车,可容纳50名乘客,最高速度20km/h。但是,国内目前对超级电容一蓄电池复合电源电动车的设计及控制,基本上还处于起步阶段。

电动车中应用超级电容的拓扑结构

纯超级电容电动车

直接以超级电容作为电动车的惟一能源,此方法结构简单、实用、成本低,而且实现了零排放,因此比较适合用于短距离、线路固定的区域,例如火车站或者飞机场的牵引车、学校和幼儿园的送餐车、公园的浏览车和电动公交车等。

复合电源电动车

超级电容与蓄电池、燃料电池等配合可以组成复合电源系统,但燃料电池因为成本较高,现在还不能得到实际应用。因此,国内外对超级电容一蓄电池复合电源系统的研究更多,其拓扑结构概括如图2所示。图2a结构最简单,但由于没有DC/DC变换器,蓄电池和超级电容将具有相同的电压,以致超级电容仅在蓄电池电压发生快速变化时输出和接收功率,从而减弱了超级电容的负载均衡作用。图2b与图2c都采用了双向OC/OC变换器,图2b中双向DC/DC跟踪检测蓄电池的端电压,以调控超级电容的端电压使两者匹配工作。由于蓄电池端电压的变化比超级电容的端电压平缓,因此对于DC/DC,图2b比图2c易于控制。图2d理论上虽然具有更高的灵活性,但对DC/DC的控制策略要求非常精确复杂且不易维护。

复合电源系统的控制策略

超级电容电池

速度约束控制策略

当车辆起步时,超级电容中应当储存较多的能量,需要超级电容放电,保证电动车的加速性能,而当车辆在高速行驶的情况下,超级电容应当储存比较少的能量,以便在制动过程中接收较多的能量。超级电容储存的能量与其端电压的平方成正比,由于超级电容的端电压变化范围比较大,因此放电时如何控制其放电深度,以备在行驶过程中二次放电或进行再生制动回收充电,但需要在实验中反复进行测试才能获得。

电流约束控制策略

电动车在行驶过程中,由于频繁地加速、减速和上下坡等原因,使得负载电流变化比较大,当负载电流太大以至于超过蓄电池所能承受的最大放电或充电电流时,为了避免电池组过放电或过充电,需要由超级电容放电或充电,以便改善电池组的工作状态,延长其使用寿命。电池组的工作电流为

超级电容电池

为了避免过大的回馈电流对蓄电池造成损害,可采用恒定充电电流的制动方式,即以蓄电池充电电流为被控对象。这是一种比较实用的控制策略,适合于采用蓄电池单电源系统的电动车。由于蓄电池电压在再生制动过程中不会发生明显的变化,因此电枢电流的上升不会太大。在超级电容一蓄电池复合电源系统中,由于超级电容端电压在单次再生制动过程中就会发生很大的改变,随着制动过程中超级电容端电压的上升和电机反电动势的下降,电枢电流将急剧上升,有可能对功率器件甚至电机造成损害,因此对超级电容充电时可采用恒功率的策略,即对再生制动过程中超级电容的充电功率进行控制。

在超级电容电压低的时候,采用大电流充电,当电容电压上升时,充电电流指令值下降,可兼顾能量回收与系统器件保护。

综合控制策略

采用速度约束控制策略可使车辆的动力性能得到提高,而采用电流约束控制策略时蓄电池的电流可以工作在规定的范同内,对蓄电池有保护作用。这2种控制策略各有优缺点,采用综合控制策略。即将速度约束控制策略和电流约束控制策略进行综合应用,可以兼顾它们的优点,既能对蓄电池起到保护作用,延长电池的使用寿命,又能提高整车的动力性能。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分