电池
燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。由于燃料电池是通过电化学反应把燃料的化学能中的吉布斯自由能部分转换成电能,不受卡诺循环效应的限制,因此效率高;另外,燃料电池用燃料和氧气作为同时没有机械传动部件,故没有噪原料,排放出的有害气体极少;声污染。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术。
燃料电池其原理是一种电化学装置,其组成与一般电池相同。其单体电池是由正负两个电极(负极即燃料电极和正极即氧化剂电极)以及电解质组成。不同的是一般电池的活性物质贮存在电池内部,因此,限制了电池容量。而燃料电池的正、负极本身不包含活性物质,只是个催化转换元件。因此燃料电池是名符其实的把化学能转化为电能的能量转换机器。电池工作时,燃料和氧化剂由外部供给,进行反应。原则上只要反应物不断输入,反应产物不断排除,燃料电池就能连续地发电。
燃料电池的主要构成组件为:电极(Electrode)、电解质隔膜(ElectrolyteMembrane)与集电器(CurrentCollector)等。
1、电极
燃料电池的电极是燃料发生氧化反应与氧化剂发生还原反应的电化学反应场所,其性能的好坏关键在于触媒的性能、电极的材料与电极的制程等。
电极主要可分为两部分,其一为阳极(Anode),另一为阴极(Cathode),厚度一般为200-500mm;其结构与一般电池之平板电极不同之处,在于燃料电池的电极为多孔结构,所以设计成多孔结构的主要原因是燃料电池所使用的燃料及氧化剂大多为气体(例如氧气、氢气等),而气体在电解质中的溶解度并不高,为了提高燃料电池的实际工作电流密度与降低极化作用,故发展出多孔结构的的电极,以增加参与反应的电极表面积,而此也是燃料电池当初所以能从理论研究阶段步入实用化阶段的重要关键原因之一。
目前高温燃料电池之电极主要是以触媒材料制成,例如固态氧化物燃料电池(简称SOFC)的Y2O3-stabilized-ZrO2(简称YSZ)及熔融碳酸盐燃料电池(简称MCFC)的氧化镍电极等,而低温燃料电池则主要是由气体扩散层支撑一薄层触媒材料而构成,例如磷酸燃料电池(简称PAFC)与质子交换膜燃料电池(简称PEMFC)的白金电极等。
2、电解质隔膜
电解质隔膜的主要功能在分隔氧化剂与还原剂,并传导离子,故电解质隔膜越薄越好,但亦需顾及强度,就现阶段的技术而言,其一般厚度约在数十毫米至数百毫米;至于材质,目前主要朝两个发展方向,其一是先以石棉(Asbestos)膜、碳化硅SiC膜、铝酸锂(LiAlO3)膜等绝缘材料制成多孔隔膜,再浸入熔融锂-钾碳酸盐、氢氧化钾与磷酸等中,使其附着在隔膜孔内,另一则是采用全氟磺酸树脂(例如PEMFC)及YSZ(例如SOFC)。
3、集电器
集电器又称作双极板(BipolarPlate),具有收集电流、分隔氧化剂与还原剂、疏导反应气体等之功用,集电器的性能主要取决于其材料特性、流场设计及其加工技术。
燃料电池是一种直接将燃料的化学能转化为电能的装置。从理论上来讲,只要连续供给燃料,燃料电池便能连续发电,已被誉为是继水力、火力、核电之后的第四代发电技术。
发电效率高
燃料电池发电不受卡诺循环的限制。理论上,它的发电效率可达到85%~90%,但由于工作时各种极化的限制,目前燃料电池的能量转化效率约为40%~60%。若实现热电联供,燃料的总利用率可高达80%以上。
环境污染小
燃料电池以天然气等富氢气体为燃料时,二氧化碳的排放量比热机过程减少40%以上,这对缓解地球的温室效应是十分重要的。另外,由于燃料电池的燃料气在反应前必须脱硫,而且按电化学原理发电,没有高温燃烧过程,因此几乎不排放氮和硫的氧化物,减轻了对大气的污染。
比能量高
液氢燃料电池的比能量是镍镉电池的800倍,直接甲醇燃料电池的比能量比锂离子电池(能量密度最高的充电电池)高10倍以上。目前,燃料电池的实际比能量尽管只有理论值的10%,但仍比一般电池的实际比能量高很多。
噪音低
燃料电池结构简单,运动部件少,工作时噪声很低。即使在11MW级的燃料电池发电厂附近,所测得的噪音也低于55dB。
燃料范围广
对于燃料电池而言,只要含有氢原子的物质都可以作为燃料,例如天然气、石油、煤炭等化石产物,或是沼气、酒精、甲醇等,因此燃料电池非常符合能源多样化的需求,可减缓主流能源的耗竭。
可靠性高
当燃料电池的负载有变动时,它会很快响应。无论处于额定功率以上过载运行或低于额定功率运行,它都能承受且效率变化不大。由于燃料电池的运行高度可靠,可作为各种应急电源和不间断电源使用。
易于建设
燃料电池具有组装式结构,安装维修方便,不需要很多辅助设施。燃料电池电站的设计和制造相当方便。
与传统汽车、纯电动汽车技术相比,燃料电池电动汽车具有以下优点。
①零排放或近似零排放,绿色环保。燃料电池电动汽车在本质上是一种零排放汽车,燃料电池没有燃烧过程,若以纯氢作燃料,通过电化学的方法,将氢和氧结合,生成物是清洁的水;采用其他富氢有机化合物用车载重整器制氢作为燃料电池的燃料,生成物除水之外还可能有少量的C02,但其排放量比内燃机要少得多,且没有其他污染排放(如氧化氮、氧化硫、碳氢化物或微粒)问题,接近零排放。与传统汽车相比既减少了机油泄漏带来的水污染,又降低了温室气体的排放。
②能量转换效率高,节约能源。燃料电池的能量转换效率极高。燃料电池没有活塞或涡轮等机械部件及中间环节,不经历热机过程,不受热力循环(卡诺循环)限制,故能量转换效率高,燃料电池的化学能转换效率在理论上可达100%,实际效率已达60%~80%,是普通内燃机热效率的2~3倍(汽油机和柴油机汽车整车效率分别为16%-18%和22%~24%)。因此,从节约能源的角度来看,燃料电池汽车明显优于使用内燃机的普通汽车。
③燃料多样化,优化了能源消耗结构。燃料电池所使用的氢燃料来源广泛,自然界中,氢能大量存储在水中,可采用水分解制氢,也可以从可再生能源获得,可取自天然气、丙烷、甲醇、汽油、柴油、煤以及再生能源。燃料来源的多样化有利于能源供应安全和利用现有的交通基础设施(如加油站等)。燃料电池不依赖石油燃料,各种可再生能源可以转化为氢能加以有效利用,减少了对石油资源的依赖,优化了交通能源的构成。
④续驶里程长,性能优于其他电池的电动汽车。采用燃料电池发电系统作为能量源,克服了纯电动汽车续驶里程短的缺点,其长途行驶能力及动力性已经接近于传统汽车。燃料电池汽车可以车载发电,只要带上足够的燃料,它可以把我们送到任何想去的地方。燃料电池电动汽车在成本和整体性能上(特别是行程和补充燃料时间上)明显优于其他电池的电动汽车。
⑤过载能力强。燃料电池除了在较宽的工作范周内具有较高的工作效率外,其短时过载能力可达额定功率的200%或更大,更适合于汽车的加速、爬坡等工况.燃料电池的短时过载能力可达200%的额定功率。
⑥运行平稳、低噪声燃料电池属于静态能量转换装置,除了空气压缩机和冷却系统以外无其他运动部件,因此与内燃机汽车相比,摆脱了马达的轰鸣,运行过程中噪声和振动都较小。
汽车业界普遍认同的一个观点是,燃料电池技术是内燃机技术最好的替代物,代表了汽车未来的发展方向。但如果将发展燃料电池汽车的几个制约因素考虑进来,则会发现燃料电池汽车目前和今后一段时间尚不具备商业化的条件。
①燃料电池汽车的制造成本和使用成本过高。制约燃料电池汽车推广应用的最大因素之一是燃料电池的生产成本一直居高不下。如何降低燃料电池的生产成本成为燃料电池汽车实用化的关键。据美国能源部测算,目前燃料电池的生产成本已降为500美元/kN。专家估计,只有当燃料电池的生产成本降至50美元/kW的水平才能为消费者所接受.也就是说.当一台80kW的汽车用燃料电池的成本降到目前汽油发动机的3500美元的价格时,才能创造巨大的市场效益。从市场经济学角度讲,高成本很难完成市场化推广,而无法实现市场化就不可能大规模批量生产,进而成本就无法降下来,最终导致成本与销售的恶性循环。
另一方面,燃料电池汽车的使用成本过也高,氢气的售价并不廉价,因此燃料电池车的运行成本并不令人乐观。目前由燃料电池发电系统提供lkW·h电能的成本远高于各种动力电池,这从一个侧面反映了作为汽车动力源,燃料电池还有相当远的距离。
②启动时间长,系统抗震能力还需提高。采用氢气为燃料的FCEV启动时间一般需要超过3min,而采用甲醇或者汽油重整技术的FCEV则长达lOmin,比起内燃机汽车启动的时间长得多,影响其机动性能。此外,当FCEV受到振动或者冲击时,各种管道的连接和密封的可靠性需要进一步的提高,以防止泄漏,降低效率,严重时引发安全事故。
③经济且无污染地获取纯氢燃料还存在技术难点。通过重整或改质技术转化传统的化石燃料获取纯氢天然气,不仅要消耗大量的能量,而且并没有从根本上摆脱对化石能的依赖,也没有从根本上消除对环境的污染。自然界中,氢能大量存储在水中,虽然取之不尽,但直接使用热分解或是电解的办法从水中制氢显然不划算。因此多数科学家都将目光转向了利用太阳能,但是还存在许多技术障碍。目前,他们正在进行太阳能分解水制氢、太阳能发电电解水制氢、阳光催化光解水制氢、太阳能生物制氢等方面的研究。只有到了能以再生性能源廉价地生产出氢燃料,氢燃料电池民用汽车的燃料问题才算获得了根本性解决。
④氢燃料电池汽车燃料的供应还有大量的技术问题有待解决。通常氢能以三种状态存储和运输:高压气态、液态和氢化物形态。用常用的压缩气体罐储存的氢,只能供燃料电池汽车行驶150km,续驶里程太短,还不如蓄电池驱动的汽车。由于氢气是最小的分子,很容易造成泄漏。哪怕是微量的泄漏,都有可能造成极度可怕的后果。而在-253℃的条件下储存液氢的深度制冷技术目前还很不成熟.就全球来说,目前能够加液氢的加氢站也没有几家。值得欣慰的是,储氢材料的开发已取得了一定的进展。
⑤供应燃料辅助设备复杂,且质量和体积较大在以甲醇或者汽油为燃料的FCEV中,经重整器出来的“粗氢气”含有使催化剂“中毒”失效的少量有害气体,必须采用相应的净化装置进行处理,增加了结构和工艺的复杂性,并使系统变得笨重。目前普遍采用氢气燃料的FCEV,因需要高压、低温和防护的特种储存罐,导致体积庞大,也给FCEV的使用带来了许多不便。
全部0条评论
快来发表一下你的评论吧 !